mirror of
https://github.com/ROCm/jax.git
synced 2025-04-25 04:56:06 +00:00
222 lines
6.9 KiB
Python
222 lines
6.9 KiB
Python
# Copyright 2020 The JAX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from functools import partial
|
|
|
|
from absl.testing import absltest
|
|
|
|
import jax
|
|
from jax import numpy as jnp
|
|
from jax._src import test_util as jtu
|
|
|
|
from jax.config import config
|
|
config.parse_flags_with_absl()
|
|
|
|
|
|
class VectorizeTest(jtu.JaxTestCase):
|
|
|
|
@jtu.sample_product(
|
|
[dict(left_shape=left_shape, right_shape=right_shape,
|
|
result_shape=result_shape)
|
|
for left_shape, right_shape, result_shape in [
|
|
((2, 3), (3, 4), (2, 4)),
|
|
((2, 3), (1, 3, 4), (1, 2, 4)),
|
|
((5, 2, 3), (1, 3, 4), (5, 2, 4)),
|
|
((6, 5, 2, 3), (3, 4), (6, 5, 2, 4)),
|
|
]
|
|
],
|
|
)
|
|
def test_matmat(self, left_shape, right_shape, result_shape):
|
|
matmat = jnp.vectorize(jnp.dot, signature='(n,m),(m,k)->(n,k)')
|
|
self.assertEqual(matmat(jnp.zeros(left_shape),
|
|
jnp.zeros(right_shape)).shape, result_shape)
|
|
|
|
@jtu.sample_product(
|
|
[dict(left_shape=left_shape, right_shape=right_shape,
|
|
result_shape=result_shape)
|
|
for left_shape, right_shape, result_shape in [
|
|
((2, 3), (3,), (2,)),
|
|
((2, 3), (1, 3), (1, 2)),
|
|
((4, 2, 3), (1, 3), (4, 2)),
|
|
((5, 4, 2, 3), (1, 3), (5, 4, 2)),
|
|
]
|
|
],
|
|
)
|
|
def test_matvec(self, left_shape, right_shape, result_shape):
|
|
matvec = jnp.vectorize(jnp.dot, signature='(n,m),(m)->(n)')
|
|
self.assertEqual(matvec(jnp.zeros(left_shape),
|
|
jnp.zeros(right_shape)).shape, result_shape)
|
|
|
|
@jtu.sample_product(
|
|
[dict(left_shape=left_shape, right_shape=right_shape,
|
|
result_shape=result_shape)
|
|
for left_shape, right_shape, result_shape in [
|
|
((3,), (3,), ()),
|
|
((2, 3), (3,), (2,)),
|
|
((4, 2, 3), (3,), (4, 2)),
|
|
]
|
|
],
|
|
)
|
|
def test_vecmat(self, left_shape, right_shape, result_shape):
|
|
vecvec = jnp.vectorize(jnp.dot, signature='(m),(m)->()')
|
|
self.assertEqual(vecvec(jnp.zeros(left_shape),
|
|
jnp.zeros(right_shape)).shape, result_shape)
|
|
|
|
@jtu.sample_product(
|
|
[dict(shape=shape, result_shape=result_shape)
|
|
for shape, result_shape in [
|
|
((3,), ()),
|
|
((2, 3,), (2,)),
|
|
((1, 2, 3,), (1, 2)),
|
|
]
|
|
],
|
|
)
|
|
def test_magnitude(self, shape, result_shape):
|
|
size = 1
|
|
for x in shape:
|
|
size *= x
|
|
inputs = jnp.arange(size).reshape(shape)
|
|
|
|
@partial(jnp.vectorize, signature='(n)->()')
|
|
def magnitude(x):
|
|
return jnp.dot(x, x)
|
|
|
|
self.assertEqual(magnitude(inputs).shape, result_shape)
|
|
|
|
@jtu.sample_product(
|
|
[dict(shape=shape, result_shape=result_shape)
|
|
for shape, result_shape in [
|
|
((3,), ()),
|
|
((2, 3), (2,)),
|
|
((1, 2, 3, 4), (1, 2, 3)),
|
|
]
|
|
],
|
|
)
|
|
def test_mean(self, shape, result_shape):
|
|
mean = jnp.vectorize(jnp.mean, signature='(n)->()')
|
|
self.assertEqual(mean(jnp.zeros(shape)).shape, result_shape)
|
|
|
|
@jtu.sample_product(
|
|
[dict(shape=shape, result_shape=result_shape)
|
|
for shape, result_shape in [
|
|
((), (2,)),
|
|
((3,), (3,2,)),
|
|
]
|
|
],
|
|
)
|
|
def test_stack_plus_minus(self, shape, result_shape):
|
|
|
|
@partial(jnp.vectorize, signature='()->(n)')
|
|
def stack_plus_minus(x):
|
|
return jnp.stack([x, -x])
|
|
|
|
self.assertEqual(stack_plus_minus(jnp.zeros(shape)).shape, result_shape)
|
|
|
|
def test_center(self):
|
|
|
|
@partial(jnp.vectorize, signature='(n)->(),(n)')
|
|
def center(array):
|
|
bias = jnp.mean(array)
|
|
debiased = array - bias
|
|
return bias, debiased
|
|
|
|
b, a = center(jnp.arange(3.0))
|
|
self.assertEqual(a.shape, (3,))
|
|
self.assertEqual(b.shape, ())
|
|
self.assertAllClose(1.0, b, check_dtypes=False)
|
|
|
|
b, a = center(jnp.arange(6.0).reshape(2, 3))
|
|
self.assertEqual(a.shape, (2, 3))
|
|
self.assertEqual(b.shape, (2,))
|
|
self.assertAllClose(jnp.array([1.0, 4.0]), b, check_dtypes=False)
|
|
|
|
def test_exclude_first(self):
|
|
|
|
@partial(jnp.vectorize, excluded={0})
|
|
def f(x, y):
|
|
assert x == 'foo'
|
|
assert y.ndim == 0
|
|
return y
|
|
|
|
x = jnp.arange(3)
|
|
self.assertAllClose(x, f('foo', x))
|
|
self.assertAllClose(x, jax.jit(f, static_argnums=0)('foo', x))
|
|
|
|
def test_exclude_second(self):
|
|
|
|
@partial(jnp.vectorize, excluded={1})
|
|
def f(x, y):
|
|
assert x.ndim == 0
|
|
assert y == 'foo'
|
|
return x
|
|
|
|
x = jnp.arange(3)
|
|
self.assertAllClose(x, f(x, 'foo'))
|
|
self.assertAllClose(x, jax.jit(f, static_argnums=1)(x, 'foo'))
|
|
|
|
def test_exclude_errors(self):
|
|
with self.assertRaisesRegex(
|
|
TypeError, "jax.numpy.vectorize can only exclude"):
|
|
jnp.vectorize(lambda x: x, excluded={'foo'})
|
|
|
|
with self.assertRaisesRegex(
|
|
ValueError, r"excluded=\{-1\} contains negative numbers"):
|
|
jnp.vectorize(lambda x: x, excluded={-1})
|
|
|
|
f = jnp.vectorize(lambda x: x, excluded={1})
|
|
with self.assertRaisesRegex(
|
|
ValueError, r"excluded=\{1\} is invalid for 1 argument\(s\)"):
|
|
f(1.0)
|
|
|
|
def test_bad_inputs(self):
|
|
matmat = jnp.vectorize(jnp.dot, signature='(n,m),(m,k)->(n,k)')
|
|
with self.assertRaisesRegex(
|
|
TypeError, "wrong number of positional arguments"):
|
|
matmat(jnp.zeros((3, 2)))
|
|
with self.assertRaisesRegex(
|
|
ValueError,
|
|
r"input with shape \(2,\) does not have enough dimensions"):
|
|
matmat(jnp.zeros((2,)), jnp.zeros((2, 2)))
|
|
with self.assertRaisesRegex(
|
|
ValueError, r"inconsistent size for core dimension 'm'"):
|
|
matmat(jnp.zeros((2, 3)), jnp.zeros((4, 5)))
|
|
|
|
def test_wrong_output_type(self):
|
|
f = jnp.vectorize(jnp.dot, signature='(n,m),(m,k)->(n,k),()')
|
|
with self.assertRaisesRegex(
|
|
TypeError, "output must be a tuple"):
|
|
f(jnp.zeros((2, 2)), jnp.zeros((2, 2)))
|
|
|
|
def test_wrong_num_outputs(self):
|
|
f = jnp.vectorize(lambda *args: args, signature='(),()->(),(),()')
|
|
with self.assertRaisesRegex(
|
|
TypeError, "wrong number of output arguments"):
|
|
f(1, 2)
|
|
|
|
def test_wrong_output_shape(self):
|
|
f = jnp.vectorize(jnp.dot, signature='(n,m),(m,k)->(n)')
|
|
with self.assertRaisesRegex(
|
|
ValueError, r"output shape \(2, 2\) does not match"):
|
|
f(jnp.zeros((2, 2)), jnp.zeros((2, 2)))
|
|
|
|
def test_inconsistent_output_size(self):
|
|
f = jnp.vectorize(jnp.dot, signature='(n,m),(m,k)->(n,n)')
|
|
with self.assertRaisesRegex(
|
|
ValueError, r"inconsistent size for core dimension 'n'"):
|
|
f(jnp.zeros((2, 3)), jnp.zeros((3, 4)))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
absltest.main(testLoader=jtu.JaxTestLoader())
|