rocm_jax/tests/linalg_sharding_test.py
Dan Foreman-Mackey f93c2a1aa5 Add and test support for partitioning of batch dimensions in lax.linalg.
On CPU and GPU, almost all of the primitives in lax.linalg are backed by custom calls that support simple semantics when batch dimensions are sharded. Before this change, all linalg operations on CPU and GPU will insert an `all-gather` before being executed when called on sharded inputs, even when that shouldn't be necessary. This change adds support for this type of partitioning, to cover a wide range of use cases.

There are a few remaining GPU ops that don't support partitioning either because they are backed by HLO ops that don't partition properly (Cholesky factorization and triangular solves), or because they're still using descriptors with problem dimensions in kernel. I'm going to fix these in follow up changes.

PiperOrigin-RevId: 731732301
2025-02-27 08:16:16 -08:00

211 lines
7.0 KiB
Python

# Copyright 2025 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
from absl.testing import absltest
import numpy as np
import jax
import jax.numpy as jnp
from jax import lax
from jax._src import config
from jax._src import test_util as jtu
from jax.sharding import PartitionSpec as P
config.parse_flags_with_absl()
jtu.request_cpu_devices(8)
float_types = jtu.dtypes.floating
complex_types = jtu.dtypes.complex
CPU_ONLY_FUN_AND_SHAPES = [
# These functions are supported on GPU, but partitioning support will
# require updates to GSPMD, since they are lowered directly to HLO ops
# instead of custom calls on GPU.
(lax.linalg.cholesky, ((6, 6),)),
(lax.linalg.triangular_solve, ((6, 6), (4, 6))),
# The GPU kernel for this function still uses an opaque descriptor to
# encode the input shapes so it is not partitionable.
# TODO(danfm): Update the kernel and enable this test on GPU.
(lax.linalg.tridiagonal_solve, ((6,), (6,), (6,), (6, 4))),
# These functions are only supported on CPU.
(lax.linalg.hessenberg, ((6, 6),)),
(lax.linalg.schur, ((6, 6),)),
]
CPU_AND_GPU_FUN_AND_SHAPES = [
(lax.linalg.eig, ((6, 6),)),
(lax.linalg.eigh, ((6, 6),)),
(lax.linalg.lu, ((10, 6),)),
(lax.linalg.qr, ((6, 6),)),
(lax.linalg.svd, ((10, 6),)),
(lax.linalg.tridiagonal, ((6, 6),)),
]
ALL_FUN_AND_SHAPES = CPU_ONLY_FUN_AND_SHAPES + CPU_AND_GPU_FUN_AND_SHAPES
class LinalgShardingTest(jtu.JaxTestCase):
def setUp(self):
super().setUp()
if jax.device_count() < 2:
self.skipTest("Requires multiple devices")
def get_fun_and_shapes(self, fun_and_shapes, grad=False):
if (jtu.test_device_matches(["gpu"])
and fun_and_shapes not in CPU_AND_GPU_FUN_AND_SHAPES):
self.skipTest(f"{fun_and_shapes[0].__name__} not supported on GPU")
if not grad:
return fun_and_shapes
fun, shapes = fun_and_shapes
if fun in (lax.linalg.schur, lax.linalg.hessenberg, lax.linalg.tridiagonal):
self.skipTest(f"{fun.__name__} does not support differentation")
if jtu.test_device_matches(["gpu"]) and fun in (
lax.linalg.eig, lax.linalg.lu, lax.linalg.qr
):
self.skipTest(
f"JVP of {fun.__name__} uses triangular solve on GPU, which doesn't "
"support batch partitioning yet")
if fun == lax.linalg.eig:
fun = functools.partial(
fun,
compute_left_eigenvectors=False,
compute_right_eigenvectors=False,
)
if fun == lax.linalg.svd:
fun = functools.partial(fun, full_matrices=False)
return fun, shapes
def get_args(self, shapes, dtype, batch_size=None):
rng = jtu.rand_default(self.rng())
def arg_maker(shape):
if batch_size is not None:
x = rng((batch_size, *shape), dtype)
else:
x = rng(shape, dtype)
if len(shape) == 2 and shape[0] == shape[1]:
x = np.matmul(x, np.swapaxes(np.conj(x), -1, -2))
return x
return tuple(arg_maker(shape) for shape in shapes)
@jtu.sample_product(
fun_and_shapes=ALL_FUN_AND_SHAPES,
dtype=float_types + complex_types,
)
@jtu.run_on_devices("gpu", "cpu")
def test_batch_axis_sharding(self, fun_and_shapes, dtype):
fun, shapes = self.get_fun_and_shapes(fun_and_shapes)
args = self.get_args(shapes, dtype, batch_size=8)
mesh = jtu.create_mesh((2,), ("i",))
sharding = jax.NamedSharding(mesh, P("i"))
args_sharded = jax.device_put(args, sharding)
fun_jit = jax.jit(fun)
expected = fun(*args)
actual = fun_jit(*args_sharded)
self.assertAllClose(actual, expected)
self.assertNotIn("all-", fun_jit.lower(*args_sharded).compile().as_text())
vmap_fun = jax.vmap(fun)
vmap_fun_jit = jax.jit(vmap_fun)
actual = vmap_fun_jit(*args_sharded)
self.assertAllClose(actual, expected)
self.assertNotIn(
"all-", vmap_fun_jit.lower(*args_sharded).compile().as_text())
@jtu.sample_product(
fun_and_shapes=ALL_FUN_AND_SHAPES,
dtype=float_types + complex_types,
)
@jtu.run_on_devices("gpu", "cpu")
def test_non_batch_axis_sharding(self, fun_and_shapes, dtype):
fun, shapes = self.get_fun_and_shapes(fun_and_shapes)
args = self.get_args(shapes, dtype)
mesh = jtu.create_mesh((2,), ("i",))
sharding = jax.NamedSharding(mesh, P("i"))
args_sharded = jax.device_put(args, sharding)
fun_jit = jax.jit(fun)
expected = fun(*args)
actual = fun_jit(*args_sharded)
self.assertAllClose(actual, expected)
self.assertIn(
"all-gather", fun_jit.lower(*args_sharded).compile().as_text())
@jtu.sample_product(
fun_and_shapes=ALL_FUN_AND_SHAPES,
dtype=float_types + complex_types,
)
@jtu.run_on_devices("gpu", "cpu")
def test_batch_axis_sharding_jvp(self, fun_and_shapes, dtype):
fun, shapes = self.get_fun_and_shapes(fun_and_shapes, grad=True)
primals = self.get_args(shapes, dtype, batch_size=8)
tangents = tuple(map(jnp.ones_like, primals))
def jvp_fun(primals, tangents):
return jax.jvp(fun, primals, tangents)
mesh = jtu.create_mesh((2,), ("i",))
sharding = jax.NamedSharding(mesh, P("i"))
primals_sharded = jax.device_put(primals, sharding)
tangents_sharded = jax.device_put(tangents, sharding)
jvp_fun_jit = jax.jit(jvp_fun)
_, expected = jvp_fun(primals, tangents)
for args in [
(primals_sharded, tangents_sharded),
(primals, tangents_sharded),
(primals_sharded, tangents),
]:
_, actual = jvp_fun_jit(*args)
self.assertAllClose(actual, expected)
hlo = jvp_fun_jit.lower(primals_sharded, tangents_sharded).compile()
self.assertNotIn("all-", hlo.as_text())
@jtu.sample_product(
fun_and_shapes=ALL_FUN_AND_SHAPES,
dtype=float_types + complex_types,
)
@jtu.run_on_devices("gpu", "cpu")
def test_batch_axis_sharding_vjp(self, fun_and_shapes, dtype):
fun, shapes = self.get_fun_and_shapes(fun_and_shapes, grad=True)
primals = self.get_args(shapes, dtype, batch_size=8)
out, vjp_fun = jax.vjp(fun, *primals)
tangents = jax.tree.map(jnp.ones_like, out)
mesh = jtu.create_mesh((2,), ("i",))
sharding = jax.NamedSharding(mesh, P("i"))
tangents_sharded = jax.device_put(tangents, sharding)
vjp_fun_jit = jax.jit(vjp_fun)
expected = vjp_fun(tangents)
actual = vjp_fun_jit(tangents_sharded)
self.assertAllClose(actual, expected)
hlo = vjp_fun_jit.lower(tangents_sharded).compile()
self.assertNotIn("all-", hlo.as_text())
if __name__ == "__main__":
absltest.main(testLoader=jtu.JaxTestLoader())