mirror of
https://github.com/ROCm/jax.git
synced 2025-04-16 03:46:06 +00:00
397 lines
15 KiB
Python
397 lines
15 KiB
Python
# Copyright 2022 The JAX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import annotations
|
|
|
|
from functools import partial
|
|
import math
|
|
import operator
|
|
from textwrap import dedent as _dedent
|
|
from typing import cast, NamedTuple
|
|
|
|
import numpy as np
|
|
|
|
from jax import jit
|
|
from jax import lax
|
|
|
|
from jax._src import core
|
|
from jax._src import dtypes
|
|
from jax._src.lax import lax as lax_internal
|
|
from jax._src.numpy.lax_numpy import (
|
|
append, arange, array, asarray, concatenate, diff,
|
|
empty, full_like, lexsort, moveaxis, nonzero, ones, ravel,
|
|
sort, where, zeros)
|
|
from jax._src.numpy.reductions import any, cumsum
|
|
from jax._src.numpy.ufuncs import isnan
|
|
from jax._src.numpy.util import check_arraylike, _wraps
|
|
from jax._src.util import canonicalize_axis
|
|
from jax._src.typing import Array, ArrayLike
|
|
|
|
|
|
_lax_const = lax_internal._const
|
|
|
|
|
|
@partial(jit, static_argnames=('invert',))
|
|
def _in1d(ar1: ArrayLike, ar2: ArrayLike, invert: bool) -> Array:
|
|
check_arraylike("in1d", ar1, ar2)
|
|
ar1_flat = ravel(ar1)
|
|
ar2_flat = ravel(ar2)
|
|
# Note: an algorithm based on searchsorted has better scaling, but in practice
|
|
# is very slow on accelerators because it relies on lax control flow. If XLA
|
|
# ever supports binary search natively, we should switch to this:
|
|
# ar2_flat = jnp.sort(ar2_flat)
|
|
# ind = jnp.searchsorted(ar2_flat, ar1_flat)
|
|
# if invert:
|
|
# return ar1_flat != ar2_flat[ind]
|
|
# else:
|
|
# return ar1_flat == ar2_flat[ind]
|
|
if invert:
|
|
return (ar1_flat[:, None] != ar2_flat[None, :]).all(-1)
|
|
else:
|
|
return (ar1_flat[:, None] == ar2_flat[None, :]).any(-1)
|
|
|
|
@_wraps(np.setdiff1d,
|
|
lax_description=_dedent("""
|
|
Because the size of the output of ``setdiff1d`` is data-dependent, the function is not
|
|
typically compatible with JIT. The JAX version adds the optional ``size`` argument which
|
|
must be specified statically for ``jnp.setdiff1d`` to be used within some of JAX's
|
|
transformations."""),
|
|
extra_params=_dedent("""
|
|
size : int, optional
|
|
If specified, the first ``size`` elements of the result will be returned. If there are
|
|
fewer elements than ``size`` indicates, the return value will be padded with ``fill_value``.
|
|
fill_value : array_like, optional
|
|
When ``size`` is specified and there are fewer than the indicated number of elements, the
|
|
remaining elements will be filled with ``fill_value``, which defaults to zero."""))
|
|
def setdiff1d(ar1: ArrayLike, ar2: ArrayLike, assume_unique: bool = False,
|
|
*, size: int | None = None, fill_value: ArrayLike | None = None) -> Array:
|
|
check_arraylike("setdiff1d", ar1, ar2)
|
|
if size is None:
|
|
ar1 = core.concrete_or_error(None, ar1, "The error arose in setdiff1d()")
|
|
else:
|
|
size = core.concrete_or_error(operator.index, size, "The error arose in setdiff1d()")
|
|
arr1 = asarray(ar1)
|
|
fill_value = asarray(0 if fill_value is None else fill_value, dtype=arr1.dtype)
|
|
if arr1.size == 0:
|
|
return full_like(arr1, fill_value, shape=size or 0)
|
|
if not assume_unique:
|
|
arr1 = cast(Array, unique(arr1, size=size and arr1.size))
|
|
mask = _in1d(arr1, ar2, invert=True)
|
|
if size is None:
|
|
return arr1[mask]
|
|
else:
|
|
if not (assume_unique or size is None):
|
|
# Set mask to zero at locations corresponding to unique() padding.
|
|
n_unique = arr1.size + 1 - (arr1 == arr1[0]).sum()
|
|
mask = where(arange(arr1.size) < n_unique, mask, False)
|
|
return where(arange(size) < mask.sum(), arr1[where(mask, size=size)], fill_value)
|
|
|
|
|
|
@_wraps(np.union1d,
|
|
lax_description=_dedent("""
|
|
Because the size of the output of ``union1d`` is data-dependent, the function is not
|
|
typically compatible with JIT. The JAX version adds the optional ``size`` argument which
|
|
must be specified statically for ``jnp.union1d`` to be used within some of JAX's
|
|
transformations."""),
|
|
extra_params=_dedent("""
|
|
size : int, optional
|
|
If specified, the first ``size`` elements of the result will be returned. If there are
|
|
fewer elements than ``size`` indicates, the return value will be padded with ``fill_value``.
|
|
fill_value : array_like, optional
|
|
When ``size`` is specified and there are fewer than the indicated number of elements, the
|
|
remaining elements will be filled with ``fill_value``, which defaults to the minimum
|
|
value of the union."""))
|
|
def union1d(ar1: ArrayLike, ar2: ArrayLike,
|
|
*, size: int | None = None, fill_value: ArrayLike | None = None) -> Array:
|
|
check_arraylike("union1d", ar1, ar2)
|
|
if size is None:
|
|
ar1 = core.concrete_or_error(None, ar1, "The error arose in union1d()")
|
|
ar2 = core.concrete_or_error(None, ar2, "The error arose in union1d()")
|
|
else:
|
|
size = core.concrete_or_error(operator.index, size, "The error arose in union1d()")
|
|
out = unique(concatenate((ar1, ar2), axis=None), size=size,
|
|
fill_value=fill_value)
|
|
return cast(Array, out)
|
|
|
|
|
|
@_wraps(np.setxor1d, lax_description="""
|
|
In the JAX version, the input arrays are explicitly flattened regardless
|
|
of assume_unique value.
|
|
""")
|
|
def setxor1d(ar1: ArrayLike, ar2: ArrayLike, assume_unique: bool = False) -> Array:
|
|
check_arraylike("setxor1d", ar1, ar2)
|
|
ar1 = core.concrete_or_error(None, ar1, "The error arose in setxor1d()")
|
|
ar2 = core.concrete_or_error(None, ar2, "The error arose in setxor1d()")
|
|
|
|
ar1 = ravel(ar1)
|
|
ar2 = ravel(ar2)
|
|
|
|
if not assume_unique:
|
|
ar1 = unique(ar1)
|
|
ar2 = unique(ar2)
|
|
|
|
aux = concatenate((ar1, ar2))
|
|
if aux.size == 0:
|
|
return aux
|
|
|
|
aux = sort(aux)
|
|
flag = concatenate((array([True]), aux[1:] != aux[:-1], array([True])))
|
|
return aux[flag[1:] & flag[:-1]]
|
|
|
|
|
|
@partial(jit, static_argnames=['return_indices'])
|
|
def _intersect1d_sorted_mask(ar1: ArrayLike, ar2: ArrayLike, return_indices: bool = False) -> tuple[Array, ...]:
|
|
"""
|
|
Helper function for intersect1d which is jit-able
|
|
"""
|
|
ar = concatenate((ar1, ar2))
|
|
if return_indices:
|
|
iota = lax.broadcasted_iota(np.int64, np.shape(ar), dimension=0)
|
|
aux, indices = lax.sort_key_val(ar, iota)
|
|
else:
|
|
aux = sort(ar)
|
|
|
|
mask = aux[1:] == aux[:-1]
|
|
if return_indices:
|
|
return aux, mask, indices
|
|
else:
|
|
return aux, mask
|
|
|
|
|
|
@_wraps(np.intersect1d)
|
|
def intersect1d(ar1: ArrayLike, ar2: ArrayLike, assume_unique: bool = False,
|
|
return_indices: bool = False) -> Array | tuple[Array, Array, Array]:
|
|
check_arraylike("intersect1d", ar1, ar2)
|
|
ar1 = core.concrete_or_error(None, ar1, "The error arose in intersect1d()")
|
|
ar2 = core.concrete_or_error(None, ar2, "The error arose in intersect1d()")
|
|
|
|
if not assume_unique:
|
|
if return_indices:
|
|
ar1, ind1 = unique(ar1, return_index=True)
|
|
ar2, ind2 = unique(ar2, return_index=True)
|
|
else:
|
|
ar1 = unique(ar1)
|
|
ar2 = unique(ar2)
|
|
else:
|
|
ar1 = ravel(ar1)
|
|
ar2 = ravel(ar2)
|
|
|
|
if return_indices:
|
|
aux, mask, aux_sort_indices = _intersect1d_sorted_mask(ar1, ar2, return_indices)
|
|
else:
|
|
aux, mask = _intersect1d_sorted_mask(ar1, ar2, return_indices)
|
|
|
|
int1d = aux[:-1][mask]
|
|
|
|
if return_indices:
|
|
ar1_indices = aux_sort_indices[:-1][mask]
|
|
ar2_indices = aux_sort_indices[1:][mask] - np.size(ar1)
|
|
if not assume_unique:
|
|
ar1_indices = ind1[ar1_indices]
|
|
ar2_indices = ind2[ar2_indices]
|
|
|
|
return int1d, ar1_indices, ar2_indices
|
|
else:
|
|
return int1d
|
|
|
|
|
|
@_wraps(np.isin, lax_description="""
|
|
In the JAX version, the `assume_unique` argument is not referenced.
|
|
""")
|
|
def isin(element: ArrayLike, test_elements: ArrayLike,
|
|
assume_unique: bool = False, invert: bool = False) -> Array:
|
|
del assume_unique # unused
|
|
check_arraylike("isin", element, test_elements)
|
|
result = _in1d(element, test_elements, invert=invert)
|
|
return result.reshape(np.shape(element))
|
|
|
|
|
|
### SetOps
|
|
|
|
UNIQUE_SIZE_HINT = (
|
|
"To make jnp.unique() compatible with JIT and other transforms, you can specify "
|
|
"a concrete value for the size argument, which will determine the output size.")
|
|
|
|
@partial(jit, static_argnames=['axis', 'equal_nan'])
|
|
def _unique_sorted_mask(ar: Array, axis: int, equal_nan: bool) -> tuple[Array, Array, Array]:
|
|
aux = moveaxis(ar, axis, 0)
|
|
if np.issubdtype(aux.dtype, np.complexfloating):
|
|
# Work around issue in sorting of complex numbers with Nan only in the
|
|
# imaginary component. This can be removed if sorting in this situation
|
|
# is fixed to match numpy.
|
|
aux = where(isnan(aux), _lax_const(aux, np.nan), aux)
|
|
size, *out_shape = aux.shape
|
|
if math.prod(out_shape) == 0:
|
|
size = 1
|
|
perm = zeros(1, dtype=int)
|
|
else:
|
|
perm = lexsort(aux.reshape(size, math.prod(out_shape)).T[::-1])
|
|
aux = aux[perm]
|
|
if aux.size:
|
|
if dtypes.issubdtype(aux.dtype, np.inexact) and equal_nan:
|
|
# This is appropriate for both float and complex due to the documented behavior of np.unique:
|
|
# See https://github.com/numpy/numpy/blob/v1.22.0/numpy/lib/arraysetops.py#L212-L220
|
|
neq = lambda x, y: lax.ne(x, y) & ~(isnan(x) & isnan(y))
|
|
else:
|
|
neq = lax.ne
|
|
mask = ones(size, dtype=bool).at[1:].set(any(neq(aux[1:], aux[:-1]), tuple(range(1, aux.ndim))))
|
|
else:
|
|
mask = zeros(size, dtype=bool)
|
|
return aux, mask, perm
|
|
|
|
def _unique(ar: Array, axis: int, return_index: bool = False, return_inverse: bool = False,
|
|
return_counts: bool = False, equal_nan: bool = True, size: int | None = None,
|
|
fill_value: ArrayLike | None = None, return_true_size: bool = False
|
|
) -> Array | tuple[Array, ...]:
|
|
"""
|
|
Find the unique elements of an array along a particular axis.
|
|
"""
|
|
axis = canonicalize_axis(axis, ar.ndim)
|
|
|
|
if ar.shape[axis] == 0 and size and fill_value is None:
|
|
raise ValueError(
|
|
"jnp.unique: for zero-sized input with nonzero size argument, fill_value must be specified")
|
|
|
|
aux, mask, perm = _unique_sorted_mask(ar, axis, equal_nan)
|
|
if size is None:
|
|
ind = core.concrete_or_error(None, mask,
|
|
"The error arose in jnp.unique(). " + UNIQUE_SIZE_HINT)
|
|
else:
|
|
ind = nonzero(mask, size=size)[0]
|
|
result = aux[ind] if aux.size else aux
|
|
if size is not None and fill_value is not None:
|
|
fill_value = asarray(fill_value, dtype=result.dtype)
|
|
if result.shape[0]:
|
|
valid = lax.expand_dims(arange(size) < mask.sum(), tuple(range(1, result.ndim)))
|
|
result = where(valid, result, fill_value)
|
|
else:
|
|
result = full_like(result, fill_value, shape=(size, *result.shape[1:]))
|
|
result = moveaxis(result, 0, axis)
|
|
|
|
ret: tuple[Array, ...] = (result,)
|
|
if return_index:
|
|
if aux.size:
|
|
ret += (perm[ind],)
|
|
else:
|
|
ret += (perm,)
|
|
if return_inverse:
|
|
if aux.size:
|
|
imask = cumsum(mask) - 1
|
|
inv_idx = zeros(mask.shape, dtype=dtypes.canonicalize_dtype(dtypes.int_))
|
|
inv_idx = inv_idx.at[perm].set(imask)
|
|
else:
|
|
inv_idx = zeros(ar.shape[axis], dtype=int)
|
|
if ar.ndim > 1:
|
|
inv_idx = lax.expand_dims(inv_idx, [i for i in range(ar.ndim) if i != axis],)
|
|
ret += (inv_idx,)
|
|
if return_counts:
|
|
if aux.size:
|
|
if size is None:
|
|
idx = append(nonzero(mask)[0], mask.size)
|
|
else:
|
|
idx = nonzero(mask, size=size + 1)[0]
|
|
idx = idx.at[1:].set(where(idx[1:], idx[1:], mask.size))
|
|
ret += (diff(idx),)
|
|
elif ar.shape[axis]:
|
|
ret += (array([ar.shape[axis]], dtype=dtypes.canonicalize_dtype(dtypes.int_)),)
|
|
else:
|
|
ret += (empty(0, dtype=int),)
|
|
if return_true_size:
|
|
# Useful for internal uses of unique().
|
|
ret += (mask.sum(),)
|
|
return ret[0] if len(ret) == 1 else ret
|
|
|
|
@_wraps(np.unique, skip_params=['axis'],
|
|
lax_description=_dedent("""
|
|
Because the size of the output of ``unique`` is data-dependent, the function is not
|
|
typically compatible with JIT. The JAX version adds the optional ``size`` argument which
|
|
must be specified statically for ``jnp.unique`` to be used within some of JAX's
|
|
transformations."""),
|
|
extra_params=_dedent("""
|
|
size : int, optional
|
|
If specified, the first ``size`` unique elements will be returned. If there are fewer unique
|
|
elements than ``size`` indicates, the return value will be padded with ``fill_value``.
|
|
fill_value : array_like, optional
|
|
When ``size`` is specified and there are fewer than the indicated number of elements, the
|
|
remaining elements will be filled with ``fill_value``. The default is the minimum value
|
|
along the specified axis of the input."""))
|
|
def unique(ar: ArrayLike, return_index: bool = False, return_inverse: bool = False,
|
|
return_counts: bool = False, axis: int | None = None,
|
|
*, equal_nan: bool = True, size: int | None = None, fill_value: ArrayLike | None = None):
|
|
check_arraylike("unique", ar)
|
|
if size is None:
|
|
ar = core.concrete_or_error(None, ar,
|
|
"The error arose for the first argument of jnp.unique(). " + UNIQUE_SIZE_HINT)
|
|
else:
|
|
size = core.concrete_or_error(operator.index, size,
|
|
"The error arose for the size argument of jnp.unique(). " + UNIQUE_SIZE_HINT)
|
|
arr = asarray(ar)
|
|
arr_shape = arr.shape
|
|
if axis is None:
|
|
axis_int: int = 0
|
|
arr = arr.flatten()
|
|
else:
|
|
axis_int = canonicalize_axis(axis, arr.ndim)
|
|
result = _unique(arr, axis_int, return_index, return_inverse, return_counts,
|
|
equal_nan=equal_nan, size=size, fill_value=fill_value)
|
|
if return_inverse and axis is None:
|
|
idx = 2 if return_index else 1
|
|
result = (*result[:idx], result[idx].reshape(arr_shape), *result[idx + 1:])
|
|
return result
|
|
|
|
|
|
class _UniqueAllResult(NamedTuple):
|
|
values: Array
|
|
indices: Array
|
|
inverse_indices: Array
|
|
counts: Array
|
|
|
|
|
|
class _UniqueCountsResult(NamedTuple):
|
|
values: Array
|
|
counts: Array
|
|
|
|
|
|
class _UniqueInverseResult(NamedTuple):
|
|
values: Array
|
|
inverse_indices: Array
|
|
|
|
|
|
@_wraps(getattr(np, "unique_all", None))
|
|
def unique_all(x: ArrayLike, /) -> _UniqueAllResult:
|
|
check_arraylike("unique_all", x)
|
|
values, indices, inverse_indices, counts = unique(
|
|
x, return_index=True, return_inverse=True, return_counts=True, equal_nan=False)
|
|
return _UniqueAllResult(values=values, indices=indices, inverse_indices=inverse_indices, counts=counts)
|
|
|
|
|
|
@_wraps(getattr(np, "unique_counts", None))
|
|
def unique_counts(x: ArrayLike, /) -> _UniqueCountsResult:
|
|
check_arraylike("unique_counts", x)
|
|
values, counts = unique(x, return_counts=True, equal_nan=False)
|
|
return _UniqueCountsResult(values=values, counts=counts)
|
|
|
|
|
|
@_wraps(getattr(np, "unique_inverse", None))
|
|
def unique_inverse(x: ArrayLike, /) -> _UniqueInverseResult:
|
|
check_arraylike("unique_inverse", x)
|
|
values, inverse_indices = unique(x, return_inverse=True, equal_nan=False)
|
|
return _UniqueInverseResult(values=values, inverse_indices=inverse_indices)
|
|
|
|
|
|
@_wraps(getattr(np, "unique_values", None))
|
|
def unique_values(x: ArrayLike, /) -> Array:
|
|
check_arraylike("unique_values", x)
|
|
return cast(Array, unique(x, equal_nan=False))
|