rocm_jax/tests/array_interoperability_test.py
Peter Hawkins fffdb2daa8
Make check_dtypes, atol, and rtol keyword-only arguments in jax.test_… (#3280)
* Make check_dtypes, atol, and rtol keyword-only arguments in jax.test_util APIs.
Default to check_dtypes=True.

Remove explicit usages of check_dtypes=True from tests. This mostly just removes visual noise from tests. Testing for exact type equality is the sensible default, although there are cases where opting out makes sense.

No functional changes intended.

* Fix a number of lax reference implementations to preserve types.
2020-06-01 17:19:23 -04:00

136 lines
4.4 KiB
Python

# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from absl.testing import absltest, parameterized
import jax
from jax.config import config
import jax.dlpack
import jax.numpy as jnp
from jax import test_util as jtu
config.parse_flags_with_absl()
try:
import torch
import torch.utils.dlpack
except ImportError:
torch = None
try:
import cupy
except ImportError:
cupy = None
dlpack_dtypes = [jnp.int8, jnp.int16, jnp.int32, jnp.int64,
jnp.uint8, jnp.uint16, jnp.uint32, jnp.uint64,
jnp.float16, jnp.float32, jnp.float64]
all_dtypes = dlpack_dtypes + [jnp.bool_, jnp.bfloat16]
torch_dtypes = [jnp.int8, jnp.int16, jnp.int32, jnp.int64,
jnp.uint8, jnp.float16, jnp.float32, jnp.float64]
nonempty_nonscalar_array_shapes = [(4,), (3, 4), (2, 3, 4)]
empty_array_shapes = []
empty_array_shapes += [(0,), (0, 4), (3, 0),]
nonempty_nonscalar_array_shapes += [(3, 1), (1, 4), (2, 1, 4)]
nonempty_array_shapes = [()] + nonempty_nonscalar_array_shapes
all_shapes = nonempty_array_shapes + empty_array_shapes
class DLPackTest(jtu.JaxTestCase):
def setUp(self):
super(DLPackTest, self).setUp()
if jtu.device_under_test() == "tpu":
self.skipTest("DLPack not supported on TPU")
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_{}".format(
jtu.format_shape_dtype_string(shape, dtype)),
"shape": shape, "dtype": dtype}
for shape in all_shapes
for dtype in dlpack_dtypes))
def testJaxRoundTrip(self, shape, dtype):
rng = jtu.rand_default(self.rng())
np = rng(shape, dtype)
x = jnp.array(np)
dlpack = jax.dlpack.to_dlpack(x)
y = jax.dlpack.from_dlpack(dlpack)
self.assertAllClose(np.astype(x.dtype), y)
self.assertRaisesRegex(RuntimeError,
"DLPack tensor may be consumed at most once",
lambda: jax.dlpack.from_dlpack(dlpack))
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_{}".format(
jtu.format_shape_dtype_string(shape, dtype)),
"shape": shape, "dtype": dtype}
for shape in all_shapes
for dtype in torch_dtypes))
@unittest.skipIf(not torch, "Test requires PyTorch")
def testTorchToJax(self, shape, dtype):
rng = jtu.rand_default(self.rng())
np = rng(shape, dtype)
x = torch.from_numpy(np)
x = x.cuda() if jtu.device_under_test() == "gpu" else x
dlpack = torch.utils.dlpack.to_dlpack(x)
y = jax.dlpack.from_dlpack(dlpack)
self.assertAllClose(np, y)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_{}".format(
jtu.format_shape_dtype_string(shape, dtype)),
"shape": shape, "dtype": dtype}
for shape in all_shapes
for dtype in torch_dtypes))
@unittest.skipIf(not torch, "Test requires PyTorch")
def testJaxToTorch(self, shape, dtype):
rng = jtu.rand_default(self.rng())
np = rng(shape, dtype)
x = jnp.array(np)
dlpack = jax.dlpack.to_dlpack(x)
y = torch.utils.dlpack.from_dlpack(dlpack)
self.assertAllClose(np, y.numpy())
class CudaArrayInterfaceTest(jtu.JaxTestCase):
def setUp(self):
super(CudaArrayInterfaceTest, self).setUp()
if jtu.device_under_test() != "gpu":
self.skipTest("__cuda_array_interface__ is only supported on GPU")
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_{}".format(
jtu.format_shape_dtype_string(shape, dtype)),
"shape": shape, "dtype": dtype}
for shape in all_shapes
for dtype in dlpack_dtypes))
@unittest.skipIf(not cupy, "Test requires CuPy")
def testJaxToCuPy(self, shape, dtype):
rng = jtu.rand_default(self.rng())
x = rng(shape, dtype)
y = jnp.array(x)
z = cupy.asarray(y)
self.assertEqual(y.__cuda_array_interface__["data"][0],
z.__cuda_array_interface__["data"][0])
self.assertAllClose(x, cupy.asnumpy(z))
if __name__ == "__main__":
absltest.main()