mirror of
https://github.com/ROCm/jax.git
synced 2025-04-16 20:06:05 +00:00

* Make check_dtypes, atol, and rtol keyword-only arguments in jax.test_util APIs. Default to check_dtypes=True. Remove explicit usages of check_dtypes=True from tests. This mostly just removes visual noise from tests. Testing for exact type equality is the sensible default, although there are cases where opting out makes sense. No functional changes intended. * Fix a number of lax reference implementations to preserve types.
3433 lines
160 KiB
Python
3433 lines
160 KiB
Python
# Copyright 2018 Google LLC
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import collections
|
|
from functools import partial
|
|
import itertools
|
|
from typing import Optional, cast
|
|
from unittest import SkipTest
|
|
|
|
from absl.testing import absltest
|
|
from absl.testing import parameterized
|
|
|
|
import numpy as onp
|
|
|
|
import jax
|
|
from jax import api
|
|
from jax import dtypes
|
|
from jax import lax
|
|
from jax import test_util as jtu
|
|
from jax import lax_reference
|
|
from jax import dtypes
|
|
from jax.test_util import check_grads
|
|
from jax.lib import xla_client
|
|
import jax.util
|
|
|
|
from jax.config import config
|
|
config.parse_flags_with_absl()
|
|
FLAGS = config.FLAGS
|
|
|
|
|
|
def num_float_bits(dtype):
|
|
return dtypes.finfo(dtypes.canonicalize_dtype(dtype)).bits
|
|
|
|
|
|
### lax tests
|
|
|
|
# For standard unops and binops, we can generate a large number of tests on
|
|
# arguments of appropriate shapes and dtypes using the following table.
|
|
|
|
def supported_dtypes(dtypes):
|
|
return [t for t in dtypes if t in jtu.supported_dtypes()]
|
|
|
|
float_dtypes = supported_dtypes([dtypes.bfloat16, onp.float16, onp.float32,
|
|
onp.float64])
|
|
complex_elem_dtypes = supported_dtypes([onp.float32, onp.float64])
|
|
complex_dtypes = supported_dtypes([onp.complex64, onp.complex128])
|
|
inexact_dtypes = float_dtypes + complex_dtypes
|
|
int_dtypes = supported_dtypes([onp.int32, onp.int64])
|
|
uint_dtypes = supported_dtypes([onp.uint32, onp.uint64])
|
|
bool_dtypes = [onp.bool_]
|
|
default_dtypes = float_dtypes + int_dtypes
|
|
all_dtypes = float_dtypes + complex_dtypes + int_dtypes + bool_dtypes
|
|
|
|
compatible_shapes = [[(3,)], [(3, 4), (3, 1), (1, 4)], [(2, 3, 4), (2, 1, 4)]]
|
|
|
|
|
|
OpRecord = collections.namedtuple(
|
|
"OpRecord", ["op", "nargs", "dtypes", "rng_factory", "tol"])
|
|
|
|
def op_record(op, nargs, dtypes, rng_factory, tol=None):
|
|
return OpRecord(op, nargs, dtypes, rng_factory, tol)
|
|
|
|
LAX_OPS = [
|
|
op_record("neg", 1, default_dtypes + complex_dtypes, jtu.rand_small),
|
|
op_record("sign", 1, default_dtypes + uint_dtypes, jtu.rand_small),
|
|
op_record("floor", 1, float_dtypes, jtu.rand_small),
|
|
op_record("ceil", 1, float_dtypes, jtu.rand_small),
|
|
op_record("round", 1, float_dtypes, jtu.rand_default),
|
|
op_record("nextafter", 2, [f for f in float_dtypes if f != dtypes.bfloat16],
|
|
jtu.rand_default, tol=0),
|
|
|
|
op_record("is_finite", 1, float_dtypes, jtu.rand_small),
|
|
|
|
op_record("exp", 1, float_dtypes + complex_dtypes, jtu.rand_small),
|
|
# TODO(b/142975473): on CPU, expm1 for float64 is only accurate to ~float32
|
|
# precision.
|
|
op_record("expm1", 1, float_dtypes + complex_dtypes, jtu.rand_small,
|
|
{onp.float64: 1e-8}),
|
|
op_record("log", 1, float_dtypes + complex_dtypes, jtu.rand_positive),
|
|
op_record("log1p", 1, float_dtypes + complex_dtypes, jtu.rand_positive),
|
|
# TODO(b/142975473): on CPU, tanh for complex128 is only accurate to
|
|
# ~float32 precision.
|
|
# TODO(b/143135720): on GPU, tanh has only ~float32 precision.
|
|
op_record("tanh", 1, float_dtypes + complex_dtypes, jtu.rand_small,
|
|
{onp.float64: 1e-9, onp.complex128: 1e-7}),
|
|
op_record("sin", 1, float_dtypes + complex_dtypes, jtu.rand_default),
|
|
op_record("cos", 1, float_dtypes + complex_dtypes, jtu.rand_default),
|
|
op_record("atan2", 2, float_dtypes, jtu.rand_default),
|
|
|
|
op_record("sqrt", 1, float_dtypes + complex_dtypes, jtu.rand_positive),
|
|
op_record("rsqrt", 1, float_dtypes + complex_dtypes, jtu.rand_positive),
|
|
op_record("square", 1, float_dtypes + complex_dtypes, jtu.rand_default),
|
|
op_record("reciprocal", 1, float_dtypes + complex_dtypes, jtu.rand_positive),
|
|
op_record("tan", 1, float_dtypes, jtu.rand_default, {onp.float32: 3e-5}),
|
|
op_record("asin", 1, float_dtypes, jtu.rand_small),
|
|
op_record("acos", 1, float_dtypes, jtu.rand_small),
|
|
op_record("atan", 1, float_dtypes, jtu.rand_small),
|
|
op_record("asinh", 1, float_dtypes, jtu.rand_default),
|
|
op_record("acosh", 1, float_dtypes, jtu.rand_positive),
|
|
# TODO(b/155331781): atanh has only ~float precision
|
|
op_record("atanh", 1, float_dtypes, jtu.rand_small, {onp.float64: 1e-9}),
|
|
op_record("sinh", 1, float_dtypes + complex_dtypes, jtu.rand_default),
|
|
op_record("cosh", 1, float_dtypes + complex_dtypes, jtu.rand_default),
|
|
op_record("lgamma", 1, float_dtypes, jtu.rand_positive,
|
|
{onp.float32: 1e-3 if jtu.device_under_test() == "tpu" else 1e-5,
|
|
onp.float64: 1e-14}),
|
|
op_record("digamma", 1, float_dtypes, jtu.rand_positive,
|
|
{onp.float64: 1e-14}),
|
|
op_record("betainc", 3, float_dtypes, jtu.rand_positive,
|
|
{onp.float64: 1e-14}),
|
|
op_record("igamma", 2,
|
|
[f for f in float_dtypes if f not in [dtypes.bfloat16, onp.float16]],
|
|
jtu.rand_positive, {onp.float64: 1e-14}),
|
|
op_record("igammac", 2,
|
|
[f for f in float_dtypes if f not in [dtypes.bfloat16, onp.float16]],
|
|
jtu.rand_positive, {onp.float64: 1e-14}),
|
|
op_record("erf", 1, float_dtypes, jtu.rand_small),
|
|
op_record("erfc", 1, float_dtypes, jtu.rand_small),
|
|
# TODO(b/142976030): the approximation of erfinf used by XLA is only
|
|
# accurate to float32 precision.
|
|
op_record("erf_inv", 1, float_dtypes, jtu.rand_small,
|
|
{onp.float64: 1e-9}),
|
|
op_record("bessel_i0e", 1, float_dtypes, jtu.rand_default),
|
|
op_record("bessel_i1e", 1, float_dtypes, jtu.rand_default),
|
|
|
|
op_record("real", 1, complex_dtypes, jtu.rand_default),
|
|
op_record("imag", 1, complex_dtypes, jtu.rand_default),
|
|
op_record("complex", 2, complex_elem_dtypes, jtu.rand_default),
|
|
op_record("conj", 1, complex_elem_dtypes + complex_dtypes,
|
|
jtu.rand_default),
|
|
op_record("abs", 1, default_dtypes + complex_dtypes, jtu.rand_default),
|
|
op_record("pow", 2, float_dtypes + complex_dtypes, jtu.rand_positive),
|
|
|
|
op_record("bitwise_and", 2, bool_dtypes, jtu.rand_small),
|
|
op_record("bitwise_not", 1, bool_dtypes, jtu.rand_small),
|
|
op_record("bitwise_or", 2, bool_dtypes, jtu.rand_small),
|
|
op_record("bitwise_xor", 2, bool_dtypes, jtu.rand_small),
|
|
op_record("population_count", 1, uint_dtypes, partial(jtu.rand_int,
|
|
high=1 << 32)),
|
|
|
|
op_record("add", 2, default_dtypes + complex_dtypes, jtu.rand_small),
|
|
op_record("sub", 2, default_dtypes + complex_dtypes, jtu.rand_small),
|
|
op_record("mul", 2, default_dtypes + complex_dtypes, jtu.rand_small),
|
|
op_record("div", 2, default_dtypes + complex_dtypes, jtu.rand_nonzero),
|
|
op_record("rem", 2, default_dtypes, jtu.rand_nonzero),
|
|
|
|
op_record("max", 2, all_dtypes, jtu.rand_small),
|
|
op_record("min", 2, all_dtypes, jtu.rand_small),
|
|
|
|
op_record("eq", 2, all_dtypes, jtu.rand_some_equal),
|
|
op_record("ne", 2, all_dtypes, jtu.rand_small),
|
|
op_record("ge", 2, default_dtypes, jtu.rand_small),
|
|
op_record("gt", 2, default_dtypes, jtu.rand_small),
|
|
op_record("le", 2, default_dtypes, jtu.rand_small),
|
|
op_record("lt", 2, default_dtypes, jtu.rand_small),
|
|
]
|
|
|
|
CombosWithReplacement = itertools.combinations_with_replacement
|
|
|
|
|
|
class LaxTest(jtu.JaxTestCase):
|
|
"""Numerical tests for LAX operations."""
|
|
|
|
@parameterized.named_parameters(itertools.chain.from_iterable(
|
|
jtu.cases_from_list(
|
|
{"testcase_name": jtu.format_test_name_suffix(
|
|
rec.op, shapes, itertools.repeat(dtype)),
|
|
"op_name": rec.op, "rng_factory": rec.rng_factory, "shapes": shapes,
|
|
"dtype": dtype}
|
|
for shape_group in compatible_shapes
|
|
for shapes in CombosWithReplacement(shape_group, rec.nargs)
|
|
for dtype in rec.dtypes)
|
|
for rec in LAX_OPS))
|
|
def testOp(self, op_name, rng_factory, shapes, dtype):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng(shape, dtype) for shape in shapes]
|
|
op = getattr(lax, op_name)
|
|
self._CompileAndCheck(op, args_maker)
|
|
|
|
@parameterized.named_parameters(itertools.chain.from_iterable(
|
|
jtu.cases_from_list(
|
|
{"testcase_name": jtu.format_test_name_suffix(
|
|
rec.op, shapes, itertools.repeat(dtype)),
|
|
"op_name": rec.op, "rng_factory": rec.rng_factory, "shapes": shapes,
|
|
"dtype": dtype, "tol": rec.tol}
|
|
for shape_group in compatible_shapes
|
|
for shapes in CombosWithReplacement(shape_group, rec.nargs)
|
|
for dtype in rec.dtypes)
|
|
for rec in LAX_OPS))
|
|
def testOpAgainstNumpy(self, op_name, rng_factory, shapes, dtype, tol):
|
|
if (not FLAGS.jax_enable_x64 and op_name == "nextafter"
|
|
and dtype == onp.float64):
|
|
raise SkipTest("64-bit mode disabled")
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng(shape, dtype) for shape in shapes]
|
|
op = getattr(lax, op_name)
|
|
numpy_op = getattr(lax_reference, op_name)
|
|
self._CheckAgainstNumpy(op, numpy_op, args_maker, tol=tol)
|
|
|
|
# TODO test shift_left, shift_right_arithmetic, shift_right_logical
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_from_dtype={}_to_dtype={}".format(
|
|
from_dtype, to_dtype),
|
|
"from_dtype": from_dtype, "to_dtype": to_dtype, "rng_factory": rng_factory}
|
|
for from_dtype, to_dtype in itertools.product(
|
|
[onp.float32, onp.int32, "float32", "int32"], repeat=2)
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testConvertElementType(self, from_dtype, to_dtype, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng((2, 3), from_dtype)]
|
|
op = lambda x: lax.convert_element_type(x, to_dtype)
|
|
self._CompileAndCheck(op, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_from_dtype={}_to_dtype={}"
|
|
.format(from_dtype, to_dtype),
|
|
"from_dtype": from_dtype, "to_dtype": to_dtype, "rng_factory": rng_factory}
|
|
for from_dtype, to_dtype in itertools.product(
|
|
[onp.float32, onp.int32, "float32", "int32"], repeat=2)
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testConvertElementTypeAgainstNumpy(self, from_dtype, to_dtype, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng((2, 3), from_dtype)]
|
|
op = lambda x: lax.convert_element_type(x, to_dtype)
|
|
numpy_op = lambda x: lax_reference.convert_element_type(x, to_dtype)
|
|
self._CheckAgainstNumpy(op, numpy_op, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_from_dtype={}_to_dtype={}"
|
|
.format(from_dtype, to_dtype),
|
|
"from_dtype": from_dtype, "to_dtype": to_dtype, "rng_factory": rng_factory}
|
|
for from_dtype, to_dtype in itertools.product(
|
|
[onp.float32, onp.int32, "float32", "int32"], repeat=2)
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testBitcastConvertType(self, from_dtype, to_dtype, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng((2, 3), from_dtype)]
|
|
op = lambda x: lax.bitcast_convert_type(x, to_dtype)
|
|
self._CompileAndCheck(op, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_from_dtype={}_to_dtype={}"
|
|
.format(from_dtype, to_dtype),
|
|
"from_dtype": from_dtype, "to_dtype": to_dtype, "rng_factory": rng_factory}
|
|
for from_dtype, to_dtype in itertools.product(
|
|
[onp.float32, onp.int32, "float32", "int32"], repeat=2)
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testBitcastConvertTypeAgainstNumpy(self, from_dtype, to_dtype, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng((2, 3), from_dtype)]
|
|
op = lambda x: lax.bitcast_convert_type(x, to_dtype)
|
|
numpy_op = lambda x: lax_reference.bitcast_convert_type(x, to_dtype)
|
|
self._CheckAgainstNumpy(op, numpy_op, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_min_shape={}_operand_shape={}_max_shape={}".format(
|
|
jtu.format_shape_dtype_string(min_shape, dtype),
|
|
jtu.format_shape_dtype_string(operand_shape, dtype),
|
|
jtu.format_shape_dtype_string(max_shape, dtype)),
|
|
"min_shape": min_shape, "operand_shape": operand_shape,
|
|
"max_shape": max_shape, "dtype": dtype, "rng_factory": rng_factory}
|
|
for min_shape, operand_shape, max_shape in [
|
|
[(), (2, 3), ()],
|
|
[(2, 3), (2, 3), ()],
|
|
[(), (2, 3), (2, 3)],
|
|
[(2, 3), (2, 3), (2, 3)],
|
|
]
|
|
for dtype in default_dtypes
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testClamp(self, min_shape, operand_shape, max_shape, dtype, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
shapes = [min_shape, operand_shape, max_shape]
|
|
args_maker = lambda: [rng(shape, dtype) for shape in shapes]
|
|
self._CompileAndCheck(lax.clamp, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_min_shape={}_operand_shape={}_max_shape={}".format(
|
|
jtu.format_shape_dtype_string(min_shape, dtype),
|
|
jtu.format_shape_dtype_string(operand_shape, dtype),
|
|
jtu.format_shape_dtype_string(max_shape, dtype)),
|
|
"min_shape": min_shape, "operand_shape": operand_shape,
|
|
"max_shape": max_shape, "dtype": dtype, "rng_factory": rng_factory}
|
|
for min_shape, operand_shape, max_shape in [
|
|
[(), (2, 3), ()],
|
|
[(2, 3), (2, 3), ()],
|
|
[(), (2, 3), (2, 3)],
|
|
[(2, 3), (2, 3), (2, 3)],
|
|
]
|
|
for dtype in default_dtypes
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testClampAgainstNumpy(self, min_shape, operand_shape, max_shape, dtype,
|
|
rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
shapes = [min_shape, operand_shape, max_shape]
|
|
args_maker = lambda: [rng(shape, dtype) for shape in shapes]
|
|
self._CheckAgainstNumpy(lax.clamp, lax_reference.clamp, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_dim={}_baseshape=[{}]_dtype={}_narrs={}".format(
|
|
dim, ",".join(str(d) for d in base_shape), onp.dtype(dtype).name,
|
|
num_arrs),
|
|
"dim": dim, "base_shape": base_shape, "dtype": dtype,
|
|
"num_arrs": num_arrs, "rng_factory": rng_factory}
|
|
for num_arrs in [3]
|
|
for dtype in default_dtypes
|
|
for base_shape in [(4,), (3, 4), (2, 3, 4)]
|
|
for dim in range(len(base_shape))
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testConcatenate(self, dim, base_shape, dtype, num_arrs, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
shapes = [base_shape[:dim] + (size,) + base_shape[dim+1:]
|
|
for size, _ in zip(itertools.cycle([3, 1, 4]), range(num_arrs))]
|
|
args_maker = lambda: [rng(shape, dtype) for shape in shapes]
|
|
op = lambda *args: lax.concatenate(args, dim)
|
|
self._CompileAndCheck(op, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_dim={}_baseshape=[{}]_dtype={}_narrs={}".format(
|
|
dim, ",".join(str(d) for d in base_shape), onp.dtype(dtype).name,
|
|
num_arrs),
|
|
"dim": dim, "base_shape": base_shape, "dtype": dtype,
|
|
"num_arrs": num_arrs, "rng_factory": rng_factory}
|
|
for num_arrs in [3]
|
|
for dtype in default_dtypes
|
|
for base_shape in [(4,), (3, 4), (2, 3, 4)]
|
|
for dim in range(len(base_shape))
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testConcatenateAgainstNumpy(self, dim, base_shape, dtype, num_arrs, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
shapes = [base_shape[:dim] + (size,) + base_shape[dim+1:]
|
|
for size, _ in zip(itertools.cycle([3, 1, 4]), range(num_arrs))]
|
|
args_maker = lambda: [rng(shape, dtype) for shape in shapes]
|
|
op = lambda *args: lax.concatenate(args, dim)
|
|
numpy_op = lambda *args: lax_reference.concatenate(args, dim)
|
|
self._CheckAgainstNumpy(op, numpy_op, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name":
|
|
"_lhs_shape={}_rhs_shape={}_strides={}_padding={}".format(
|
|
jtu.format_shape_dtype_string(lhs_shape, dtype),
|
|
jtu.format_shape_dtype_string(rhs_shape, dtype), strides, padding),
|
|
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
|
|
"strides": strides, "padding": padding, "rng_factory": rng_factory}
|
|
for lhs_shape, rhs_shape in [
|
|
((b, i, 9, 10), (j, i, 4, 5))
|
|
for b, i, j in itertools.product([2, 3], repeat=3)]
|
|
for dtype in float_dtypes
|
|
for strides in [(1, 1), (1, 2), (2, 1)]
|
|
for padding in ["VALID", "SAME"]
|
|
for rng_factory in [jtu.rand_small]))
|
|
def testConv(self, lhs_shape, rhs_shape, dtype, strides, padding, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
|
|
|
|
def fun(lhs, rhs):
|
|
return lax.conv(lhs, rhs, strides, padding)
|
|
|
|
self._CompileAndCheck(fun, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name":
|
|
"_lhs_shape={}_rhs_shape={}_strides={}_padding={}".format(
|
|
jtu.format_shape_dtype_string(lhs_shape, dtype),
|
|
jtu.format_shape_dtype_string(rhs_shape, dtype), strides, padding),
|
|
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
|
|
"strides": strides, "padding": padding, "rng_factory": rng_factory}
|
|
for lhs_shape, rhs_shape in [
|
|
((b, i, 9, 10), (j, i, 4, 5))
|
|
for b, i, j in itertools.product([2, 3], repeat=3)]
|
|
for dtype in float_dtypes
|
|
for strides in [(1, 1), (1, 2), (2, 1)]
|
|
for padding in ["VALID", "SAME"]
|
|
for rng_factory in [jtu.rand_small]))
|
|
def testConvAgainstNumpy(self, lhs_shape, rhs_shape, dtype, strides, padding,
|
|
rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
|
|
op = lambda lhs, rhs: lax.conv(lhs, rhs, strides, padding)
|
|
numpy_op = lambda lhs, rhs: lax_reference.conv(lhs, rhs, strides, padding)
|
|
self._CheckAgainstNumpy(op, numpy_op, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_lhs_shape={}_rhs_shape={}_strides={}_padding={}"
|
|
"_lhs_dilation={}_rhs_dilation={}".format(
|
|
jtu.format_shape_dtype_string(lhs_shape, dtype),
|
|
jtu.format_shape_dtype_string(rhs_shape, dtype),
|
|
strides, padding, lhs_dilation, rhs_dilation),
|
|
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
|
|
"strides": strides, "padding": padding, "lhs_dilation": lhs_dilation,
|
|
"rhs_dilation": rhs_dilation, "rng_factory": rng_factory}
|
|
for lhs_shape, rhs_shape in [
|
|
((b, i, 9, 10), (j, i, 4, 5))
|
|
for b, i, j in itertools.product([1, 2, 3], repeat=3)]
|
|
for dtype in float_dtypes
|
|
for strides in [(1, 1), (1, 2), (2, 1)]
|
|
for padding in [((0, 0), (0, 0)), ((1, 2), (2, 0))]
|
|
for lhs_dilation, rhs_dilation in itertools.product(
|
|
[(1, 1), (1, 2), (2, 2)], repeat=2)
|
|
for rng_factory in [jtu.rand_small]))
|
|
def testConvWithGeneralPadding(self, lhs_shape, rhs_shape, dtype, strides,
|
|
padding, lhs_dilation, rhs_dilation, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
|
|
|
|
def fun(lhs, rhs):
|
|
return lax.conv_with_general_padding(
|
|
lhs, rhs, strides, padding, lhs_dilation, rhs_dilation)
|
|
|
|
self._CompileAndCheck(fun, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_lhs_shape={}_rhs_shape={}_strides={}_padding={}"
|
|
"_lhs_dilation={}_rhs_dilation={}".format(
|
|
jtu.format_shape_dtype_string(lhs_shape, dtype),
|
|
jtu.format_shape_dtype_string(rhs_shape, dtype),
|
|
strides, padding, lhs_dilation, rhs_dilation),
|
|
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
|
|
"strides": strides, "padding": padding, "lhs_dilation": lhs_dilation,
|
|
"rhs_dilation": rhs_dilation, "rng_factory": rng_factory}
|
|
for lhs_shape, rhs_shape in [
|
|
((b, i, 9, 10), (j, i, 4, 5))
|
|
for b, i, j in itertools.product([1, 2, 3], repeat=3)]
|
|
for dtype in [onp.float32] for strides in [(1, 1), (1, 2), (2, 1)]
|
|
for padding in [((0, 0), (0, 0)), ((1, 2), (2, 0))]
|
|
for lhs_dilation, rhs_dilation in itertools.product(
|
|
[(1, 1), (1, 2), (2, 2)], repeat=2)
|
|
for rng_factory in [jtu.rand_small]))
|
|
def testConvWithGeneralPaddingAgainstNumpy(
|
|
self, lhs_shape, rhs_shape, dtype, strides, padding, lhs_dilation,
|
|
rhs_dilation, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
|
|
|
|
def fun(lhs, rhs):
|
|
return lax.conv_with_general_padding(
|
|
lhs, rhs, strides, padding, lhs_dilation, rhs_dilation,
|
|
precision=lax.Precision.HIGHEST)
|
|
|
|
def numpy_fun(lhs, rhs):
|
|
return lax_reference.conv_with_general_padding(
|
|
lhs, rhs, strides, padding, lhs_dilation, rhs_dilation)
|
|
|
|
self._CheckAgainstNumpy(numpy_fun, fun, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_lhs_shape={}_rhs_shape={}_strides={}_padding={}"
|
|
"_lhs_dilation={}_rhs_dilation={}"
|
|
"_dims={}".format(
|
|
jtu.format_shape_dtype_string(lhs_shape, dtype),
|
|
jtu.format_shape_dtype_string(rhs_shape, dtype),
|
|
strides, padding, lhs_dilation, rhs_dilation,
|
|
",".join(dim_nums)),
|
|
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
|
|
"strides": strides, "padding": padding, "lhs_dilation": lhs_dilation,
|
|
"rhs_dilation": rhs_dilation, "dimension_numbers": dim_nums,
|
|
"feature_group_count": feature_group_count,
|
|
"batch_group_count": batch_group_count,
|
|
"perms": perms, "rng_factory": rng_factory}
|
|
for batch_group_count, feature_group_count in [(1, 1), (2, 1), (1, 2)]
|
|
for lhs_shape, rhs_shape in [
|
|
((b * batch_group_count, i * feature_group_count, 9, w),
|
|
(j * feature_group_count * batch_group_count, i, 4, 5))
|
|
for w in [0, 10]
|
|
for b, i, j in itertools.product([2, 3], repeat=3)]
|
|
for dtype in float_dtypes for strides in [(1, 1), (2, 1)]
|
|
for padding in [((1, 2), (2, 0)), ((10, 8), (7, 13))]
|
|
for lhs_dilation, rhs_dilation in itertools.product(
|
|
[(1, 1), (1, 2), (1, 4)], repeat=2)
|
|
for rng_factory in [jtu.rand_small]
|
|
for dim_nums, perms in [
|
|
(("NCHW", "OIHW", "NCHW"), ([0, 1, 2, 3], [0, 1, 2, 3])),
|
|
(("NHWC", "HWIO", "NHWC"), ([0, 2, 3, 1], [2, 3, 1, 0])),
|
|
(("NCHW", "HWIO", "NHWC"), ([0, 1, 2, 3], [2, 3, 1, 0])),
|
|
]))
|
|
def testConvGeneralDilated(self, lhs_shape, rhs_shape, dtype, strides,
|
|
padding, lhs_dilation, rhs_dilation,
|
|
feature_group_count, batch_group_count,
|
|
dimension_numbers, perms, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
lhs_perm, rhs_perm = perms # permute to compatible shapes
|
|
|
|
def args_maker():
|
|
return [lax.transpose(rng(lhs_shape, dtype), lhs_perm),
|
|
lax.transpose(rng(rhs_shape, dtype), rhs_perm)]
|
|
|
|
def fun(lhs, rhs):
|
|
return lax.conv_general_dilated(
|
|
lhs, rhs, strides, padding, lhs_dilation, rhs_dilation,
|
|
dimension_numbers, feature_group_count=feature_group_count,
|
|
batch_group_count=batch_group_count)
|
|
|
|
self._CompileAndCheck(fun, args_maker)
|
|
|
|
# TODO(mattjj): test conv_general_dilated against numpy
|
|
|
|
def testConv0DIsDot(self):
|
|
rng = jtu.rand_default(self.rng())
|
|
def args_maker():
|
|
return [rng((10, 5), onp.float32), rng((5, 7), onp.float32)]
|
|
jnp_fun = partial(lax.conv_general_dilated, window_strides=(),
|
|
padding='VALID', dimension_numbers=('NC', 'IO', 'NC'))
|
|
self._CompileAndCheck(jnp_fun, args_maker)
|
|
self._CheckAgainstNumpy(jnp_fun, onp.dot, args_maker, tol=.1)
|
|
|
|
|
|
@staticmethod
|
|
def _conv_transpose_via_grad(data, kernel, strides, padding,
|
|
rhs_dilation=None, dimension_numbers=None):
|
|
"""Helper method: calculates conv transpose via grad for testing."""
|
|
assert len(data.shape) == len(kernel.shape)
|
|
nspatial = len(data.shape) - 2
|
|
one = (1,) * nspatial
|
|
rhs_dilation = rhs_dilation or one
|
|
dn = lax.conv_dimension_numbers(data.shape, kernel.shape,
|
|
dimension_numbers)
|
|
in_shape = onp.take(data.shape, dn.lhs_spec)
|
|
in_sdims = in_shape[2:]
|
|
k_shape = onp.take(kernel.shape, dn.rhs_spec)
|
|
k_sdims = k_shape[2:]
|
|
e_k_sdims = [(k-1) * r + 1 for k, r in zip(k_sdims, rhs_dilation)]
|
|
if padding == 'VALID':
|
|
o_sdims = [in_sdims[i]*strides[i] + max(e_k_sdims[i]-strides[i],0)
|
|
for i in range(nspatial)]
|
|
elif padding == 'SAME':
|
|
o_sdims = [in_sdims[i]*strides[i] for i in range(nspatial)]
|
|
o_shape = [in_shape[0], k_shape[1]] + o_sdims
|
|
out_spec_inv = [x[0] for x in
|
|
sorted(enumerate(dn.out_spec), key=lambda x: x[1])]
|
|
o_layout = onp.take(onp.array(o_shape), out_spec_inv)
|
|
placeholder = onp.ones(o_layout, data.dtype)
|
|
conv = lambda x: lax.conv_general_dilated(x, kernel, strides, padding,
|
|
one, rhs_dilation, dn)
|
|
_, g = api.vjp(conv, placeholder)
|
|
return g(data)[0]
|
|
|
|
@staticmethod
|
|
def _transpose_conv_kernel(data, kernel, dimension_numbers):
|
|
dn = lax.conv_dimension_numbers(data.shape, kernel.shape,
|
|
dimension_numbers)
|
|
spatial_axes = onp.array(dn.rhs_spec)[2:]
|
|
for axis in spatial_axes:
|
|
kernel = onp.flip(kernel, axis)
|
|
kernel = onp.swapaxes(kernel, dn.rhs_spec[0], dn.rhs_spec[1])
|
|
return kernel
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name":
|
|
"_lhs_shape={}_rhs_shape={}_strides={}_padding={}_rhs_dilation={}".format(
|
|
jtu.format_shape_dtype_string(lhs_shape, dtype),
|
|
jtu.format_shape_dtype_string(rhs_shape, dtype), strides, padding, rhs_dilation),
|
|
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
|
|
"strides": strides, "padding": padding, "rhs_dilation": rhs_dilation,
|
|
"rng_factory": rng_factory, 'dspec': dspec}
|
|
for lhs_shape, rhs_shape in [
|
|
((b, 9, 10, i), (k, k, j, i)) # NB: i,j flipped in RHS for transpose
|
|
for b, i, j, k in itertools.product([2,3],[2,3],[2,3],[3,4,5])]
|
|
for dtype in float_dtypes
|
|
for strides in [(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)]
|
|
for padding in ["VALID", "SAME"]
|
|
for dspec in [('NHWC', 'HWIO', 'NHWC'),]
|
|
for rhs_dilation in [None, (2, 2)]
|
|
for rng_factory in [jtu.rand_small]))
|
|
@jtu.skip_on_flag("jax_skip_slow_tests", True)
|
|
def testConvTranspose2DT(self, lhs_shape, rhs_shape, dtype, strides,
|
|
padding, dspec, rhs_dilation, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
|
|
|
|
# NB: this test calculates conv_transpose performing identically to the
|
|
# lhs-grad of conv.
|
|
def fun(lhs, rhs):
|
|
return lax.conv_transpose(lhs, rhs, strides, padding,
|
|
rhs_dilation=rhs_dilation,
|
|
dimension_numbers=dspec,
|
|
transpose_kernel=True)
|
|
|
|
def fun_via_grad(lhs, rhs):
|
|
return self._conv_transpose_via_grad(lhs, rhs, strides, padding,
|
|
rhs_dilation=rhs_dilation,
|
|
dimension_numbers=dspec)
|
|
|
|
# NB: below just checks for agreement, we're not calling numpy.
|
|
self._CheckAgainstNumpy(fun, fun_via_grad, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name":
|
|
"_lhs_shape={}_rhs_shape={}_strides={}_padding={}_rhs_dilation={}".format(
|
|
jtu.format_shape_dtype_string(lhs_shape, dtype),
|
|
jtu.format_shape_dtype_string(rhs_shape, dtype), strides, padding, rhs_dilation),
|
|
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
|
|
"strides": strides, "padding": padding, "rhs_dilation": rhs_dilation,
|
|
"rng_factory": rng_factory, 'dspec': dspec}
|
|
for lhs_shape, rhs_shape in [
|
|
((b, 9, 10, i), (k, k, i, j))
|
|
for b, i, j, k in itertools.product([2,3],[2,3],[2,3],[3,4,5])]
|
|
for dtype in float_dtypes
|
|
for strides in [(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)]
|
|
for padding in ["VALID", "SAME"]
|
|
for dspec in [('NHWC', 'HWIO', 'NHWC'),]
|
|
for rhs_dilation in [None, (2, 2)]
|
|
for rng_factory in [jtu.rand_small]))
|
|
@jtu.skip_on_flag("jax_skip_slow_tests", True)
|
|
def testConvTranspose2D(self, lhs_shape, rhs_shape, dtype, strides,
|
|
padding, dspec, rhs_dilation, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
|
|
|
|
def fun(lhs, rhs):
|
|
return lax.conv_transpose(lhs, rhs, strides, padding,
|
|
rhs_dilation=rhs_dilation,
|
|
dimension_numbers=dspec,
|
|
transpose_kernel=False)
|
|
|
|
def fun_via_grad(lhs, rhs):
|
|
rhs_t = self._transpose_conv_kernel(lhs, rhs, dimension_numbers=dspec)
|
|
return self._conv_transpose_via_grad(lhs, rhs_t, strides, padding,
|
|
rhs_dilation=rhs_dilation,
|
|
dimension_numbers=dspec)
|
|
|
|
# NB: below just checks for agreement, we're not calling numpy.
|
|
self._CheckAgainstNumpy(fun, fun_via_grad, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name":
|
|
"_lhs_shape={}_rhs_shape={}_strides={}_padding={}_rhs_dilation={}".format(
|
|
jtu.format_shape_dtype_string(lhs_shape, dtype),
|
|
jtu.format_shape_dtype_string(rhs_shape, dtype), strides, padding, rhs_dilation),
|
|
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
|
|
"strides": strides, "padding": padding, "rhs_dilation": rhs_dilation,
|
|
"rng_factory": rng_factory, 'dspec': dspec}
|
|
for lhs_shape, rhs_shape in [
|
|
((b, 10, i), (k, i, j))
|
|
for b, i, j, k in itertools.product([2,3],[2,3],[2,3],[3,4,5])]
|
|
for dtype in float_dtypes
|
|
for strides in [(1,), (2,), (3,)]
|
|
for padding in ["VALID", "SAME"]
|
|
for dspec in [('NHC', 'HIO', 'NHC'),]
|
|
for rhs_dilation in [None, (2,)]
|
|
for rng_factory in [jtu.rand_small]))
|
|
def testConvTranspose1D(self, lhs_shape, rhs_shape, dtype, strides,
|
|
padding, dspec, rhs_dilation, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
|
|
|
|
def fun(lhs, rhs):
|
|
return lax.conv_transpose(lhs, rhs, strides, padding,
|
|
dimension_numbers=dspec,
|
|
rhs_dilation=rhs_dilation,
|
|
transpose_kernel=False)
|
|
|
|
def fun_via_grad(lhs, rhs):
|
|
rhs_t = self._transpose_conv_kernel(lhs, rhs, dimension_numbers=dspec)
|
|
return self._conv_transpose_via_grad(lhs, rhs_t, strides, padding,
|
|
rhs_dilation=rhs_dilation,
|
|
dimension_numbers=dspec)
|
|
|
|
# NB: below just checks for agreement, we're not calling numpy.
|
|
self._CheckAgainstNumpy(fun, fun_via_grad, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_lhs_shape={}_rhs_shape={}_precision={}".format(
|
|
jtu.format_shape_dtype_string(lhs_shape, dtype),
|
|
jtu.format_shape_dtype_string(rhs_shape, dtype),
|
|
precision),
|
|
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
|
|
"precision": precision, "rng_factory": rng_factory}
|
|
for lhs_shape in [(3,), (4, 3)] for rhs_shape in [(3,), (3, 6)]
|
|
for dtype in all_dtypes
|
|
for precision in [None, lax.Precision.DEFAULT, lax.Precision.HIGH,
|
|
lax.Precision.HIGHEST]
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testDot(self, lhs_shape, rhs_shape, dtype, precision, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
|
|
self._CompileAndCheck(partial(lax.dot, precision=precision), args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_lhs_shape={}_rhs_shape={}".format(
|
|
jtu.format_shape_dtype_string(lhs_shape, dtype),
|
|
jtu.format_shape_dtype_string(rhs_shape, dtype)),
|
|
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
|
|
"rng_factory": rng_factory}
|
|
for lhs_shape in [(3,), (4, 3)] for rhs_shape in [(3,), (3, 6)]
|
|
for dtype in all_dtypes
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testDotAgainstNumpy(self, lhs_shape, rhs_shape, dtype, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
|
|
tol = {
|
|
onp.float16: 1e-2,
|
|
onp.float64: max(jtu.default_tolerance()[onp.dtype(onp.float64)], 1e-14),
|
|
onp.complex128: max(jtu.default_tolerance()[onp.dtype(onp.complex128)],
|
|
1e-14)
|
|
}
|
|
lax_op = partial(lax.dot, precision=lax.Precision.HIGHEST)
|
|
self._CheckAgainstNumpy(lax_op, lax_reference.dot, args_maker, tol=tol)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name":
|
|
"_lhs_shape={}_rhs_shape={}_lhs_contracting={}_rhs_contracting={}"
|
|
.format(jtu.format_shape_dtype_string(lhs_shape, dtype),
|
|
jtu.format_shape_dtype_string(rhs_shape, dtype),
|
|
lhs_contracting, rhs_contracting),
|
|
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
|
|
"lhs_contracting": lhs_contracting, "rhs_contracting": rhs_contracting,
|
|
"rng_factory": rng_factory}
|
|
for lhs_shape, rhs_shape, lhs_contracting, rhs_contracting in [
|
|
[(3, 5), (2, 5), [1], [1]],
|
|
[(5, 3), (5, 2), [0], [0]],
|
|
[(5, 3, 2), (5, 2, 4), [0], [0]],
|
|
[(5, 3, 2), (5, 2, 4), [0,2], [0,1]],
|
|
[(1, 2, 2, 3), (1, 2, 3, 1), [1], [1]],
|
|
[(3, 2), (2, 4), [1], [0]],
|
|
]
|
|
for dtype in all_dtypes
|
|
for rng_factory in [jtu.rand_small]))
|
|
def testDotGeneralContractOnly(self, lhs_shape, rhs_shape, dtype,
|
|
lhs_contracting, rhs_contracting, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
|
|
dimension_numbers = ((lhs_contracting, rhs_contracting), ([], []))
|
|
|
|
def fun(lhs, rhs):
|
|
return lax.dot_general(lhs, rhs, dimension_numbers)
|
|
|
|
self._CompileAndCheck(fun, args_maker, check_dtypes=False)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name":
|
|
"_lhs_shape={}_rhs_shape={}_dimension_numbers={}"
|
|
.format(jtu.format_shape_dtype_string(lhs_shape, dtype),
|
|
jtu.format_shape_dtype_string(rhs_shape, dtype),
|
|
dimension_numbers),
|
|
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
|
|
"dimension_numbers": dimension_numbers, "rng_factory": rng_factory}
|
|
for lhs_shape, rhs_shape, dimension_numbers in [
|
|
((3, 3, 2), (3, 2, 4), (([2], [1]), ([0], [0]))),
|
|
((3, 4, 2, 4), (3, 4, 3, 2), (([2], [3]), ([0, 1], [0, 1]))),
|
|
]
|
|
for dtype in all_dtypes
|
|
for rng_factory in [jtu.rand_small]))
|
|
def testDotGeneralContractAndBatch(self, lhs_shape, rhs_shape, dtype,
|
|
dimension_numbers, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
|
|
|
|
def fun(lhs, rhs):
|
|
return lax.dot_general(lhs, rhs, dimension_numbers)
|
|
|
|
self._CompileAndCheck(fun, args_maker, check_dtypes=False)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name":
|
|
"_lhs_shape={}_rhs_shape={}_dimension_numbers={}"
|
|
.format(jtu.format_shape_dtype_string(lhs_shape, dtype),
|
|
jtu.format_shape_dtype_string(rhs_shape, dtype),
|
|
dimension_numbers),
|
|
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
|
|
"dimension_numbers": dimension_numbers, "rng_factory": rng_factory}
|
|
for lhs_shape, rhs_shape, dimension_numbers in [
|
|
((3, 3, 2), (3, 2, 4), (([2], [1]), ([0], [0]))),
|
|
((3, 4, 2, 4), (3, 4, 3, 2), (([2], [3]), ([0, 1], [0, 1]))),
|
|
]
|
|
for dtype in all_dtypes
|
|
for rng_factory in [jtu.rand_small]))
|
|
def testDotGeneralAgainstNumpy(self, lhs_shape, rhs_shape, dtype,
|
|
dimension_numbers, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
|
|
op = lambda x, y: lax.dot_general(x, y, dimension_numbers)
|
|
numpy_op = lambda x, y: lax_reference.dot_general(x, y, dimension_numbers)
|
|
self._CheckAgainstNumpy(op, numpy_op, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_dtype={}_broadcast_sizes={}".format(
|
|
shape, onp.dtype(dtype).name, broadcast_sizes),
|
|
"shape": shape, "dtype": dtype, "broadcast_sizes": broadcast_sizes,
|
|
"rng_factory": rng_factory}
|
|
for shape in [(), (2, 3)]
|
|
for dtype in default_dtypes
|
|
for broadcast_sizes in [(), (2,), (1, 2)]
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testBroadcast(self, shape, dtype, broadcast_sizes, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng(shape, dtype)]
|
|
op = lambda x: lax.broadcast(x, broadcast_sizes)
|
|
self._CompileAndCheck(op, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_broadcast_sizes={}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype), broadcast_sizes),
|
|
"shape": shape, "dtype": dtype, "broadcast_sizes": broadcast_sizes,
|
|
"rng_factory": rng_factory}
|
|
for shape in [(), (2, 3)]
|
|
for dtype in default_dtypes
|
|
for broadcast_sizes in [(), (2,), (1, 2)]
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testBroadcastAgainstNumpy(self, shape, dtype, broadcast_sizes, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng(shape, dtype)]
|
|
op = lambda x: lax.broadcast(x, broadcast_sizes)
|
|
numpy_op = lambda x: lax_reference.broadcast(x, broadcast_sizes)
|
|
self._CheckAgainstNumpy(op, numpy_op, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_inshape={}_outshape={}_bcdims={}".format(
|
|
jtu.format_shape_dtype_string(inshape, dtype),
|
|
outshape, broadcast_dimensions),
|
|
"inshape": inshape, "dtype": dtype, "outshape": outshape,
|
|
"dimensions": broadcast_dimensions, "rng_factory": rng_factory}
|
|
for inshape, outshape, broadcast_dimensions in [
|
|
([2], [2, 2], [0]),
|
|
([2], [2, 2], [1]),
|
|
([2], [2, 3], [0]),
|
|
([], [2, 3], []),
|
|
([1], [2, 3], [1]),
|
|
]
|
|
for dtype in default_dtypes
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testBroadcastInDim(self, inshape, dtype, outshape, dimensions, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng(inshape, dtype)]
|
|
op = lambda x: lax.broadcast_in_dim(x, outshape, dimensions)
|
|
self._CompileAndCheck(op, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_inshape={}_outshape={}_bcdims={}".format(
|
|
jtu.format_shape_dtype_string(inshape, onp.float32),
|
|
outshape, broadcast_dimensions),
|
|
"inshape": inshape, "outshape": outshape,
|
|
"broadcast_dimensions": broadcast_dimensions, "err_msg": err_msg}
|
|
for inshape, outshape, broadcast_dimensions, err_msg in [
|
|
([2], [2, 2], [0, 1], ('broadcast_dimensions must have length equal to '
|
|
'operand ndim')),
|
|
([2, 2], [2], [0, 1], ('target broadcast shape must have equal or higher rank '
|
|
'to the operand shape')),
|
|
([2], [2, 3], [2], ('broadcast_in_dim broadcast_dimensions must be a subset of output '
|
|
'dimensions')),
|
|
([2], [3], [0], ('operand dimension sizes must either be 1, or be '
|
|
'equal to their corresponding dimensions in the target broadcast shape')),
|
|
([2, 2], [2, 2], [1, 0], ('broadcast_dimensions must be strictly increasing')),
|
|
]))
|
|
def testBroadcastInDimShapeCheck(self, inshape, outshape, broadcast_dimensions, err_msg):
|
|
rng = jtu.rand_default(self.rng())
|
|
x = rng(inshape, onp.float32)
|
|
with self.assertRaisesRegex(TypeError, err_msg):
|
|
lax.broadcast_in_dim(x, shape=outshape, broadcast_dimensions=broadcast_dimensions)
|
|
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_inshape={}_outshape={}_bcdims={}".format(
|
|
jtu.format_shape_dtype_string(inshape, dtype),
|
|
outshape, broadcast_dimensions),
|
|
"inshape": inshape, "dtype": dtype, "outshape": outshape,
|
|
"dimensions": broadcast_dimensions, "rng_factory": rng_factory}
|
|
for inshape, outshape, broadcast_dimensions in [
|
|
([2], [2, 2], [0]),
|
|
([2], [2, 2], [1]),
|
|
([2], [2, 3], [0]),
|
|
([], [2, 3], []),
|
|
([1], [2, 3], [1]),
|
|
]
|
|
for dtype in default_dtypes
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testBroadcastInDimAgainstNumpy(self, inshape, dtype, outshape,
|
|
dimensions, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng(inshape, dtype)]
|
|
op = lambda x: lax.broadcast_in_dim(x, outshape, dimensions)
|
|
numpy_op = lambda x: lax_reference.broadcast_in_dim(x, outshape, dimensions)
|
|
self._CheckAgainstNumpy(op, numpy_op, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_inshape={}_dimensions={}".format(
|
|
jtu.format_shape_dtype_string(inshape, onp.float32), dimensions),
|
|
"inshape": inshape, "dimensions": dimensions, "error_type": error_type,
|
|
"err_msg": err_msg}
|
|
for inshape, dimensions, error_type, err_msg in [
|
|
((1, 2, 3), (0, 0), ValueError, 'dimensions are not unique'),
|
|
((1, 2, 3), (3,), ValueError, 'axis 3 is out of bounds'),
|
|
((1, 2, 3), (-4,), ValueError, 'axis -4 is out of bounds'),
|
|
((1, 2, 3), (1,), ValueError, 'cannot select an axis to squeeze out'),
|
|
((1, 2, 3), (None,), TypeError, 'cannot be interpreted as an integer'),
|
|
]))
|
|
def testSqueezeShapeCheck(self, inshape, dimensions, error_type, err_msg):
|
|
rng = jtu.rand_default(self.rng())
|
|
x = rng(inshape, onp.float32)
|
|
with self.assertRaisesRegex(error_type, err_msg):
|
|
lax.squeeze(x, dimensions=dimensions)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_inshape={}_dimensions={}".format(
|
|
jtu.format_shape_dtype_string(arg_shape, onp.float32), dimensions),
|
|
"arg_shape": arg_shape, "dimensions": dimensions,
|
|
"rng_factory": rng_factory}
|
|
for arg_shape, dimensions in [
|
|
[(1,), (0,)],
|
|
[(1,), (-1,)],
|
|
[(2, 1, 4), (1,)],
|
|
[(2, 1, 3, 1), (1,)],
|
|
[(2, 1, 3, 1), (1, 3)],
|
|
[(2, 1, 3, 1), (3,)],
|
|
]
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testSqueeze(self, arg_shape, dimensions, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng(arg_shape, onp.float32)]
|
|
op = lambda x: lax.squeeze(x, dimensions)
|
|
numpy_op = lambda x: lax_reference.squeeze(x, dimensions)
|
|
self._CompileAndCheck(op, args_maker)
|
|
self._CheckAgainstNumpy(op, numpy_op, args_maker)
|
|
check_grads(op, args_maker(), 2, ["fwd", "rev"], eps=1.)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_inshape={}_outshape={}".format(
|
|
jtu.format_shape_dtype_string(arg_shape, dtype),
|
|
jtu.format_shape_dtype_string(out_shape, dtype)),
|
|
"arg_shape": arg_shape, "out_shape": out_shape, "dtype": dtype,
|
|
"rng_factory": rng_factory}
|
|
for dtype in default_dtypes
|
|
for arg_shape, out_shape in [
|
|
[(3, 4), (12,)], [(2, 1, 4), (8,)], [(2, 2, 4), (2, 8)]
|
|
]
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testReshape(self, arg_shape, out_shape, dtype, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng(arg_shape, dtype)]
|
|
op = lambda x: lax.reshape(x, out_shape)
|
|
self._CompileAndCheck(op, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_inshape={}_outshape={}".format(
|
|
jtu.format_shape_dtype_string(arg_shape, dtype),
|
|
jtu.format_shape_dtype_string(out_shape, dtype)),
|
|
"arg_shape": arg_shape, "out_shape": out_shape, "dtype": dtype,
|
|
"rng_factory": rng_factory}
|
|
for dtype in default_dtypes
|
|
for arg_shape, out_shape in [
|
|
[(3, 4), (12,)], [(2, 1, 4), (8,)], [(2, 2, 4), (2, 8)]
|
|
]
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testReshapeAgainstNumpy(self, arg_shape, out_shape, dtype, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng(arg_shape, dtype)]
|
|
op = lambda x: lax.reshape(x, out_shape)
|
|
numpy_op = lambda x: lax_reference.reshape(x, out_shape)
|
|
self._CheckAgainstNumpy(op, numpy_op, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_inshape={}_pads={}"
|
|
.format(jtu.format_shape_dtype_string(shape, dtype), pads),
|
|
"shape": shape, "dtype": dtype, "pads": pads, "rng_factory": jtu.rand_small}
|
|
for shape in [(2, 3)]
|
|
for dtype in default_dtypes
|
|
for pads in [[(1, 2, 1), (0, 1, 0)]]))
|
|
def testPad(self, shape, dtype, pads, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng(shape, dtype)]
|
|
fun = lambda operand: lax.pad(operand, onp.array(0, dtype), pads)
|
|
self._CompileAndCheck(fun, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_inshape={}_pads={}"
|
|
.format(jtu.format_shape_dtype_string(shape, dtype), pads),
|
|
"shape": shape, "dtype": dtype, "pads": pads, "rng_factory": jtu.rand_small}
|
|
for shape in [(2, 3)]
|
|
for dtype in default_dtypes
|
|
for pads in [[(1, 2, 1), (0, 1, 0)]]))
|
|
def testPadAgainstNumpy(self, shape, dtype, pads, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng(shape, dtype)]
|
|
op = lambda x: lax.pad(x, onp.array(0, dtype), pads)
|
|
numpy_op = lambda x: lax_reference.pad(x, onp.array(0, dtype), pads)
|
|
self._CheckAgainstNumpy(op, numpy_op, args_maker)
|
|
|
|
def testReverse(self):
|
|
rev = api.jit(lambda operand: lax.rev(operand, dimensions))
|
|
|
|
dimensions = []
|
|
self.assertAllClose(onp.array([0, 1, 2, 3]), rev(onp.array([0, 1, 2, 3])),
|
|
check_dtypes=False)
|
|
|
|
dimensions = [0]
|
|
self.assertAllClose(onp.array([3, 2, 1]), rev(onp.array([1, 2, 3])),
|
|
check_dtypes=False)
|
|
|
|
dimensions = [0, 1]
|
|
self.assertAllClose(onp.array([[6, 5, 4], [3, 2, 1]]),
|
|
rev(onp.array([[1, 2, 3], [4, 5, 6]])),
|
|
check_dtypes=False)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_predshape={}_argshapes={}".format(
|
|
jtu.format_shape_dtype_string(pred_shape, onp.bool_),
|
|
jtu.format_shape_dtype_string(arg_shape, arg_dtype)),
|
|
"pred_shape": pred_shape, "arg_shape": arg_shape, "arg_dtype": arg_dtype,
|
|
"rng_factory": rng_factory}
|
|
for arg_shape in [(), (3,), (2, 3)]
|
|
for pred_shape in ([(), arg_shape] if arg_shape else [()])
|
|
for arg_dtype in default_dtypes
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testSelect(self, pred_shape, arg_shape, arg_dtype, rng_factory):
|
|
def args_maker():
|
|
return [rng(pred_shape, onp.bool_), rng(arg_shape, arg_dtype),
|
|
rng(arg_shape, arg_dtype)]
|
|
rng = rng_factory(self.rng())
|
|
return self._CompileAndCheck(lax.select, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_predshape={}_argshapes={}".format(
|
|
jtu.format_shape_dtype_string(pred_shape, onp.bool_),
|
|
jtu.format_shape_dtype_string(arg_shape, arg_dtype)),
|
|
"pred_shape": pred_shape, "arg_shape": arg_shape, "arg_dtype": arg_dtype,
|
|
"rng_factory": rng_factory}
|
|
for arg_shape in [(), (3,), (2, 3)]
|
|
for pred_shape in ([(), arg_shape] if arg_shape else [()])
|
|
for arg_dtype in default_dtypes
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testSelectAgainstNumpy(self, pred_shape, arg_shape, arg_dtype, rng_factory):
|
|
def args_maker():
|
|
return [rng(pred_shape, onp.bool_), rng(arg_shape, arg_dtype),
|
|
rng(arg_shape, arg_dtype)]
|
|
rng = rng_factory(self.rng())
|
|
return self._CheckAgainstNumpy(lax.select, lax_reference.select, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name":
|
|
"_shape={}_start_indices={}_limit_indices={}_strides={}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype),
|
|
start_indices, limit_indices, strides),
|
|
"shape": shape, "dtype": dtype, "starts": start_indices,
|
|
"limits": limit_indices, "strides": strides, "rng_factory": rng_factory}
|
|
for shape, start_indices, limit_indices, strides in [
|
|
[(3,), (1,), (2,), None],
|
|
[(7,), (4,), (7,), None],
|
|
[(5,), (1,), (5,), (2,)],
|
|
[(8,), (1,), (6,), (2,)],
|
|
[(5, 3), (1, 1), (3, 2), None],
|
|
[(5, 3), (1, 1), (3, 1), None],
|
|
[(7, 5, 3), (4, 0, 1), (7, 1, 3), None],
|
|
[(5, 3), (1, 1), (2, 1), (1, 1)],
|
|
[(5, 3), (1, 1), (5, 3), (2, 1)],
|
|
]
|
|
for dtype in default_dtypes
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testSlice(self, shape, dtype, starts, limits, strides, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng(shape, dtype)]
|
|
op = lambda x: lax.slice(x, starts, limits, strides)
|
|
self._CompileAndCheck(op, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name":
|
|
"_shape={}_start_indices={}_limit_indices={}_strides={}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype),
|
|
start_indices, limit_indices, strides),
|
|
"shape": shape, "dtype": dtype, "starts": start_indices,
|
|
"limits": limit_indices, "strides": strides, "rng_factory": rng_factory}
|
|
for shape, start_indices, limit_indices, strides in [
|
|
[(3,), (1,), (2,), None],
|
|
[(7,), (4,), (7,), None],
|
|
[(5,), (1,), (5,), (2,)],
|
|
[(8,), (1,), (6,), (2,)],
|
|
[(5, 3), (1, 1), (3, 2), None],
|
|
[(5, 3), (1, 1), (3, 1), None],
|
|
[(7, 5, 3), (4, 0, 1), (7, 1, 3), None],
|
|
[(5, 3), (1, 1), (2, 1), (1, 1)],
|
|
[(5, 3), (1, 1), (5, 3), (2, 1)],
|
|
]
|
|
for dtype in default_dtypes
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testSliceAgainstNumpy(self, shape, dtype, starts, limits,
|
|
strides, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng(shape, dtype)]
|
|
op = lambda x: lax.slice(x, starts, limits, strides)
|
|
numpy_op = lambda x: lax_reference.slice(x, starts, limits, strides)
|
|
self._CheckAgainstNumpy(op, numpy_op, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_start_indices={}_size_indices={}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype),
|
|
start_indices, size_indices),
|
|
"shape": shape, "dtype": dtype, "start_indices": start_indices,
|
|
"size_indices": size_indices, "rng_factory": rng_factory}
|
|
for shape, start_indices, size_indices in [
|
|
[(3,), onp.array((1,)), (1,)],
|
|
[(5, 3), (1, 1), (3, 1)],
|
|
[(5, 3), onp.array((1, 1)), (3, 1)],
|
|
[(7, 5, 3), onp.array((4, 1, 0)), (2, 0, 1)],
|
|
]
|
|
for dtype in default_dtypes
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testDynamicSlice(self, shape, dtype, start_indices, size_indices, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng(shape, dtype), onp.array(start_indices)]
|
|
op = lambda x, starts: lax.dynamic_slice(x, starts, size_indices)
|
|
self._CompileAndCheck(op, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_start_indices={}_size_indices={}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype),
|
|
start_indices, size_indices),
|
|
"shape": shape, "dtype": dtype, "start_indices": start_indices,
|
|
"size_indices": size_indices, "rng_factory": rng_factory}
|
|
for shape, start_indices, size_indices in [
|
|
[(3,), (1,), (1,)],
|
|
[(5, 3), (1, 1), (3, 1)],
|
|
[(7, 5, 3), (4, 1, 0), (2, 0, 1)],
|
|
]
|
|
for dtype in default_dtypes
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testDynamicSliceAgainstNumpy(self, shape, dtype, start_indices,
|
|
size_indices, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng(shape, dtype), onp.array(start_indices)]
|
|
op = lambda x, s: lax.dynamic_slice(x, s, size_indices)
|
|
numpy_op = lambda x, s: lax_reference.dynamic_slice(x, s, size_indices)
|
|
self._CheckAgainstNumpy(op, numpy_op, args_maker)
|
|
|
|
def testDynamicSliceInDim(self):
|
|
# Regression test for mixed type problem in dynamic_slice_in_dim.
|
|
rng = jtu.rand_default(self.rng())
|
|
x = rng((6, 7), onp.int32)
|
|
onp.testing.assert_equal(lax.dynamic_slice_in_dim(x, 2, 3), x[2:5])
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_start_indices={}_update_shape={}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype),
|
|
start_indices, update_shape),
|
|
"shape": shape, "dtype": dtype, "start_indices": start_indices,
|
|
"update_shape": update_shape, "rng_factory": rng_factory}
|
|
for shape, start_indices, update_shape in [
|
|
[(3,), (1,), (1,)],
|
|
[(5, 3), (1, 1), (3, 1)],
|
|
[(7, 5, 3), (4, 1, 0), (2, 0, 1)],
|
|
]
|
|
for dtype in default_dtypes
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testDynamicUpdateSlice(self, shape, dtype, start_indices, update_shape,
|
|
rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
|
|
def args_maker():
|
|
return [rng(shape, dtype), rng(update_shape, dtype),
|
|
onp.array(start_indices)]
|
|
|
|
self._CompileAndCheck(lax.dynamic_update_slice, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_start_indices={}_update_shape={}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype),
|
|
start_indices, update_shape),
|
|
"shape": shape, "dtype": dtype, "start_indices": start_indices,
|
|
"update_shape": update_shape, "rng_factory": rng_factory}
|
|
for shape, start_indices, update_shape in [
|
|
[(3,), (1,), (1,)],
|
|
[(5, 3), (1, 1), (3, 1)],
|
|
[(7, 5, 3), (4, 1, 0), (2, 0, 1)],
|
|
]
|
|
for dtype in default_dtypes
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testDynamicUpdateSliceAgainstNumpy(self, shape, dtype, start_indices,
|
|
update_shape, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
|
|
def args_maker():
|
|
return [rng(shape, dtype), rng(update_shape, dtype),
|
|
onp.array(start_indices)]
|
|
|
|
self._CheckAgainstNumpy(lax.dynamic_update_slice,
|
|
lax_reference.dynamic_update_slice, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_perm={}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype), perm),
|
|
"shape": shape, "dtype": dtype, "perm": perm, "rng_factory": rng_factory}
|
|
for shape, perm in [
|
|
[(3, 4), (1, 0)],
|
|
[(3, 4), (0, 1)],
|
|
[(3, 4, 5), (2, 1, 0)],
|
|
[(3, 4, 5), (1, 0, 2)],
|
|
]
|
|
for dtype in default_dtypes
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testTranspose(self, shape, dtype, perm, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng(shape, dtype)]
|
|
op = lambda x: lax.transpose(x, perm)
|
|
self._CompileAndCheck(op, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_perm={}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype), perm),
|
|
"shape": shape, "dtype": dtype, "perm": perm, "rng_factory": rng_factory}
|
|
for shape, perm in [
|
|
[(3, 4), (1, 0)],
|
|
[(3, 4), (0, 1)],
|
|
[(3, 4, 5), (2, 1, 0)],
|
|
[(3, 4, 5), (1, 0, 2)],
|
|
]
|
|
for dtype in default_dtypes
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testTransposeAgainstNumpy(self, shape, dtype, perm, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args_maker = lambda: [rng(shape, dtype)]
|
|
op = lambda x: lax.transpose(x, perm)
|
|
numpy_op = lambda x: lax_reference.transpose(x, perm)
|
|
self._CheckAgainstNumpy(op, numpy_op, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_op={}_inshape={}_reducedims={}_initval={}"
|
|
.format(op.__name__, jtu.format_shape_dtype_string(shape, dtype), dims,
|
|
init_val),
|
|
"op": op, "init_val": init_val, "shape": shape, "dtype": dtype,
|
|
"dims": dims, "rng_factory": rng_factory}
|
|
for init_val, op, types in [
|
|
(0, lax.add, default_dtypes),
|
|
(1, lax.mul, default_dtypes),
|
|
(0, lax.max, all_dtypes), # non-monoidal
|
|
(-onp.inf, lax.max, float_dtypes),
|
|
(dtypes.iinfo(onp.int32).min, lax.max, [onp.int32]),
|
|
# (dtypes.iinfo(onp.int64).min, lax.max, [onp.int64]), # TODO fails
|
|
(dtypes.iinfo(onp.uint32).min, lax.max, [onp.uint32]),
|
|
(dtypes.iinfo(onp.uint64).min, lax.max, [onp.uint64]),
|
|
(onp.inf, lax.min, float_dtypes),
|
|
(dtypes.iinfo(onp.int32).max, lax.min, [onp.int32]),
|
|
# (dtypes.iinfo(onp.int64).max, lax.min, [onp.int64]), # TODO fails
|
|
(dtypes.iinfo(onp.uint32).max, lax.min, [onp.uint32]),
|
|
(dtypes.iinfo(onp.uint64).max, lax.min, [onp.uint64]),
|
|
]
|
|
for dtype in types
|
|
for shape, dims in [
|
|
[(3, 4, 5), (0,)], [(3, 4, 5), (1, 2)],
|
|
[(3, 4, 5), (0, 2)], [(3, 4, 5), (0, 1, 2)]
|
|
]
|
|
for rng_factory in [
|
|
jtu.rand_default if dtypes.issubdtype(dtype, onp.integer)
|
|
else jtu.rand_small]))
|
|
def testReduce(self, op, init_val, shape, dtype, dims, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
init_val = onp.asarray(init_val, dtype=dtype)
|
|
fun = lambda operand, init_val: lax.reduce(operand, init_val, op, dims)
|
|
args_maker = lambda: [rng(shape, dtype), init_val]
|
|
self._CompileAndCheck(fun, args_maker)
|
|
|
|
# we separately test the version that uses a concrete init_val because it
|
|
# can hit different code paths
|
|
fun = lambda operand: lax.reduce(operand, init_val, op, dims)
|
|
args_maker = lambda: [rng(shape, dtype)]
|
|
self._CompileAndCheck(fun, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_op={}_dtype={}_padding={}"
|
|
.format(op.__name__, onp.dtype(dtype).name, padding),
|
|
"op": op, "init_val": init_val, "dtype": dtype, "padding": padding,
|
|
"rng_factory": rng_factory}
|
|
for init_val, op, dtypes in [
|
|
(0, lax.add, [onp.float32]),
|
|
(-onp.inf, lax.max, [onp.float32]),
|
|
(onp.inf, lax.min, [onp.float32]),
|
|
]
|
|
for dtype in dtypes
|
|
for padding in ["VALID", "SAME"]
|
|
for rng_factory in [jtu.rand_small]))
|
|
def testReduceWindow(self, op, init_val, dtype, padding, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
init_val = onp.asarray(init_val, dtype=dtype)
|
|
|
|
all_configs = itertools.chain(
|
|
itertools.product(
|
|
[(4, 6)],
|
|
[(2, 1), (1, 2)],
|
|
[(1, 1), (2, 1), (1, 2)]),
|
|
itertools.product(
|
|
[(3, 2, 4, 6)], [(1, 1, 2, 1), (2, 1, 2, 1)],
|
|
[(1, 2, 2, 1), (1, 1, 1, 1)]))
|
|
|
|
def fun(operand, init_val):
|
|
return lax.reduce_window(operand, init_val, op, dims, strides, padding)
|
|
|
|
# pylint: disable=cell-var-from-loop
|
|
for shape, dims, strides in all_configs:
|
|
args_maker = lambda: [rng(shape, dtype), init_val]
|
|
self._CompileAndCheck(fun, args_maker)
|
|
# pylint: enable=cell-var-from-loop
|
|
|
|
# we separately test the version that uses a concrete init_val because it
|
|
# can hit different code paths
|
|
def fun(operand):
|
|
return lax.reduce_window(operand, init_val, op, dims, strides, padding)
|
|
|
|
# pylint: disable=cell-var-from-loop
|
|
for shape, dims, strides in all_configs:
|
|
args_maker = lambda: [rng(shape, dtype)]
|
|
self._CompileAndCheck(fun, args_maker)
|
|
# pylint: enable=cell-var-from-loop
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_op={}_shape={}_axis={}"
|
|
.format(op.__name__, jtu.format_shape_dtype_string(shape, dtype), axis),
|
|
"op": op, "onp_op": onp_op, "shape": shape, "dtype": dtype,
|
|
"axis": axis, "rng_factory": rng_factory}
|
|
for op, onp_op, types in [
|
|
(lax.cumsum, onp.cumsum, default_dtypes),
|
|
(lax.cumprod, onp.cumprod, default_dtypes),
|
|
]
|
|
for dtype in types
|
|
for shape in [[10], [3, 4, 5]]
|
|
for axis in range(len(shape))
|
|
for rng_factory in [
|
|
jtu.rand_default if dtypes.issubdtype(dtype, onp.integer)
|
|
else jtu.rand_small]))
|
|
def testCumulativeReduce(self, op, onp_op, shape, dtype, axis, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
fun = partial(op, axis=axis)
|
|
onp_fun = partial(onp_op, axis=axis, dtype=dtype)
|
|
args_maker = lambda: [rng(shape, dtype)]
|
|
self._CompileAndCheck(fun, args_maker)
|
|
self._CheckAgainstNumpy(fun, onp_fun, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_axis={}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype), axis),
|
|
"shape": shape, "dtype": dtype, "axis": axis}
|
|
for dtype in all_dtypes
|
|
for shape in [(5,), (5, 7)]
|
|
for axis in [-1, len(shape) - 1]))
|
|
def testSort(self, shape, dtype, axis):
|
|
# TODO(b/141131288): enable complex-valued sorts on TPU.
|
|
if (onp.issubdtype(dtype, onp.complexfloating) and (
|
|
(jtu.device_under_test() == "cpu" and jax.lib.version <= (0, 1, 47)) or
|
|
jtu.device_under_test() == "tpu")):
|
|
raise SkipTest("Complex-valued sort not implemented")
|
|
rng = jtu.rand_default(self.rng())
|
|
args_maker = lambda: [rng(shape, dtype)]
|
|
fun = lambda x: lax.sort(x, dimension=axis)
|
|
self._CompileAndCheck(fun, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_axis={}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype), axis),
|
|
"shape": shape, "dtype": dtype, "axis": axis}
|
|
for dtype in all_dtypes
|
|
for shape in [(5,), (5, 7)]
|
|
for axis in [-1, len(shape) - 1]))
|
|
def testSortAgainstNumpy(self, shape, dtype, axis):
|
|
# TODO(b/141131288): enable complex-valued sorts on TPU.
|
|
if (onp.issubdtype(dtype, onp.complexfloating) and (
|
|
(jtu.device_under_test() == "cpu" and jax.lib.version <= (0, 1, 47)) or
|
|
jtu.device_under_test() == "tpu")):
|
|
raise SkipTest("Complex-valued sort not implemented")
|
|
rng = jtu.rand_default(self.rng())
|
|
args_maker = lambda: [rng(shape, dtype)]
|
|
op = lambda x: lax.sort(x, dimension=axis)
|
|
numpy_op = lambda x: lax_reference.sort(x, axis)
|
|
self._CheckAgainstNumpy(op, numpy_op, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_keyshape={}_valshape={}_axis={}".format(
|
|
jtu.format_shape_dtype_string(shape, key_dtype),
|
|
jtu.format_shape_dtype_string(shape, val_dtype),
|
|
axis),
|
|
"shape": shape, "key_dtype": key_dtype, "val_dtype": val_dtype,
|
|
"axis": axis}
|
|
for key_dtype in float_dtypes + complex_dtypes + int_dtypes + uint_dtypes
|
|
for val_dtype in [onp.float32, onp.int32, onp.uint32]
|
|
for shape in [(3,), (5, 3)]
|
|
for axis in [-1, len(shape) - 1]))
|
|
def testSortKeyVal(self, shape, key_dtype, val_dtype, axis):
|
|
# TODO(b/141131288): enable complex-valued sorts on TPU.
|
|
if (onp.issubdtype(key_dtype, onp.complexfloating) and (
|
|
(jtu.device_under_test() == "cpu" and jax.lib.version <= (0, 1, 47)) or
|
|
jtu.device_under_test() == "tpu")):
|
|
raise SkipTest("Complex-valued sort not implemented")
|
|
rng = jtu.rand_default(self.rng())
|
|
# This test relies on the property that wherever keys are tied, values are
|
|
# too, since we don't guarantee the same ordering of values with equal keys.
|
|
# To avoid that case, we generate unique keys (globally in the key array).
|
|
def args_maker():
|
|
flat_keys = onp.arange(onp.prod(shape, dtype=int), dtype=key_dtype)
|
|
keys = self.rng().permutation(flat_keys).reshape(shape)
|
|
values = rng(shape, val_dtype)
|
|
return keys, values
|
|
|
|
fun = lambda keys, values: lax.sort_key_val(keys, values, axis)
|
|
self._CompileAndCheck(fun, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_keyshape={}_valshape={}_axis={}".format(
|
|
jtu.format_shape_dtype_string(shape, key_dtype),
|
|
jtu.format_shape_dtype_string(shape, val_dtype),
|
|
axis),
|
|
"shape": shape, "key_dtype": key_dtype, "val_dtype": val_dtype,
|
|
"axis": axis}
|
|
for key_dtype in float_dtypes + complex_dtypes + int_dtypes + uint_dtypes
|
|
for val_dtype in [onp.float32, onp.int32, onp.uint32]
|
|
for shape in [(3,), (5, 3)]
|
|
for axis in [-1, len(shape) - 1]))
|
|
def testSortKeyValAgainstNumpy(self, shape, key_dtype, val_dtype, axis):
|
|
# TODO(b/141131288): enable complex-valued sorts on TPU.
|
|
if (onp.issubdtype(key_dtype, onp.complexfloating) and (
|
|
(jtu.device_under_test() == "cpu" and jax.lib.version <= (0, 1, 47)) or
|
|
jtu.device_under_test() == "tpu")):
|
|
raise SkipTest("Complex-valued sort not implemented")
|
|
rng = jtu.rand_default(self.rng())
|
|
# This test relies on the property that wherever keys are tied, values are
|
|
# too, since we don't guarantee the same ordering of values with equal keys.
|
|
# To avoid that case, we generate unique keys (globally in the key array).
|
|
def args_maker():
|
|
flat_keys = onp.arange(onp.prod(shape, dtype=int), dtype=key_dtype)
|
|
keys = self.rng().permutation(flat_keys).reshape(shape)
|
|
values = rng(shape, val_dtype)
|
|
return keys, values
|
|
|
|
op = lambda ks, vs: lax.sort_key_val(ks, vs, axis)
|
|
numpy_op = lambda ks, vs: lax_reference.sort_key_val(ks, vs, axis)
|
|
self._CheckAgainstNumpy(op, numpy_op, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_k={}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype), k),
|
|
"rng_factory": rng_factory, "shape": shape, "dtype": dtype, "k": k}
|
|
for dtype in [onp.float32, onp.int32, onp.uint32]
|
|
for shape in [(3,), (5, 3)]
|
|
for k in [1, 3]
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testTopK(self, shape, dtype, k, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
def args_maker():
|
|
flat_values = onp.arange(onp.prod(shape, dtype=int), dtype=dtype)
|
|
values = self.rng().permutation(flat_values).reshape(shape)
|
|
return [values]
|
|
def reference_top_k(x):
|
|
bcast_idxs = onp.broadcast_to(onp.arange(shape[-1], dtype=onp.int32), shape)
|
|
sorted_vals, sorted_idxs = lax_reference.sort_key_val(x, bcast_idxs)
|
|
return sorted_vals[..., :-k-1:-1], sorted_idxs[..., :-k-1:-1]
|
|
op = lambda vs: lax.top_k(vs, k=k)
|
|
self._CheckAgainstNumpy(op, reference_top_k, args_maker)
|
|
self._CompileAndCheck(op, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_lhs_shape={}_rhs_shape={}"
|
|
.format(jtu.format_shape_dtype_string(lhs_shape, dtype),
|
|
jtu.format_shape_dtype_string(rhs_shape, dtype)),
|
|
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
|
|
"rng_factory": rng_factory}
|
|
for lhs_shape, rhs_shape in [((3, 2), (2, 4)),
|
|
((5, 3, 2), (5, 2, 4)),
|
|
((1, 2, 2, 3), (1, 2, 3, 1))]
|
|
for dtype in float_dtypes
|
|
for rng_factory in [jtu.rand_small]))
|
|
def testBatchMatMul(self, lhs_shape, rhs_shape, dtype, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
arg_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
|
|
self._CompileAndCheck(lax.batch_matmul, arg_maker)
|
|
|
|
def testCollapse(self):
|
|
|
|
@api.jit
|
|
def collapse_first_two(x):
|
|
return lax.collapse(x, 0, 2)
|
|
|
|
self.assertEqual((6,), collapse_first_two(onp.zeros((2, 3))).shape)
|
|
self.assertEqual((6, 4), collapse_first_two(onp.zeros((2, 3, 4))).shape)
|
|
self.assertEqual((2, 3, 4),
|
|
collapse_first_two(onp.zeros((1, 2, 3, 4))).shape)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_idxs={}_axes={}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype), idxs, axes),
|
|
"shape": shape, "dtype": dtype, "idxs": idxs, "axes": axes, "rng_factory": rng_factory}
|
|
for dtype in all_dtypes
|
|
for shape, idxs, axes in [
|
|
[(3, 4, 5), (onp.array([0, 2, 1]),), (0,)],
|
|
[(3, 4, 5), (onp.array([-1, -2]),), (0,)],
|
|
[(3, 4, 5), (onp.array([0, 2]), onp.array([1, 3])), (0, 1)],
|
|
[(3, 4, 5), (onp.array([0, 2]), onp.array([1, 3])), (0, 2)],
|
|
]
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testIndexTake(self, shape, dtype, idxs, axes, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
rand_idxs = lambda: tuple(rng(e.shape, e.dtype) for e in idxs)
|
|
args_maker = lambda: [rng(shape, dtype), rand_idxs()]
|
|
fun = lambda src, idxs: lax.index_take(src, idxs, axes)
|
|
self._CompileAndCheck(fun, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_idxs={}_dnums={}_slice_sizes={}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype), idxs, dnums,
|
|
slice_sizes),
|
|
"shape": shape, "dtype": dtype, "idxs": idxs, "dnums": dnums,
|
|
"slice_sizes": slice_sizes, "rng_factory": rng_factory,
|
|
"rng_idx_factory": rng_idx_factory}
|
|
for dtype in all_dtypes
|
|
for shape, idxs, dnums, slice_sizes in [
|
|
((5,), onp.array([[0], [2]]), lax.GatherDimensionNumbers(
|
|
offset_dims=(), collapsed_slice_dims=(0,), start_index_map=(0,)),
|
|
(1,)),
|
|
((10,), onp.array([[0], [0], [0]]), lax.GatherDimensionNumbers(
|
|
offset_dims=(1,), collapsed_slice_dims=(), start_index_map=(0,)),
|
|
(2,)),
|
|
((10, 5,), onp.array([[0], [2], [1]]), lax.GatherDimensionNumbers(
|
|
offset_dims=(1,), collapsed_slice_dims=(0,), start_index_map=(0,)),
|
|
(1, 3)),
|
|
((10, 5), onp.array([[0, 2], [1, 0]]), lax.GatherDimensionNumbers(
|
|
offset_dims=(1,), collapsed_slice_dims=(0,), start_index_map=(0, 1)),
|
|
(1, 3)),
|
|
]
|
|
for rng_idx_factory in [partial(jtu.rand_int, high=max(shape))]
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testGather(self, shape, dtype, idxs, dnums, slice_sizes, rng_factory,
|
|
rng_idx_factory):
|
|
rng = rng_factory(self.rng())
|
|
rng_idx = rng_idx_factory(self.rng())
|
|
rand_idxs = lambda: rng_idx(idxs.shape, idxs.dtype)
|
|
args_maker = lambda: [rng(shape, dtype), rand_idxs()]
|
|
fun = partial(lax.gather, dimension_numbers=dnums, slice_sizes=slice_sizes)
|
|
self._CompileAndCheck(fun, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_idxs={}_update={}_dnums={}".format(
|
|
jtu.format_shape_dtype_string(arg_shape, dtype),
|
|
idxs, update_shape, dnums),
|
|
"arg_shape": arg_shape, "dtype": dtype, "idxs": idxs,
|
|
"update_shape": update_shape, "dnums": dnums,
|
|
"rng_factory": rng_factory, "rng_idx_factory": rng_idx_factory}
|
|
for dtype in float_dtypes
|
|
for arg_shape, idxs, update_shape, dnums in [
|
|
((5,), onp.array([[0], [2]]), (2,), lax.ScatterDimensionNumbers(
|
|
update_window_dims=(), inserted_window_dims=(0,),
|
|
scatter_dims_to_operand_dims=(0,))),
|
|
((10,), onp.array([[0], [0], [0]]), (3, 2), lax.ScatterDimensionNumbers(
|
|
update_window_dims=(1,), inserted_window_dims=(),
|
|
scatter_dims_to_operand_dims=(0,))),
|
|
((10, 5,), onp.array([[0], [2], [1]]), (3, 3), lax.ScatterDimensionNumbers(
|
|
update_window_dims=(1,), inserted_window_dims=(0,),
|
|
scatter_dims_to_operand_dims=(0,))),
|
|
]
|
|
for rng_idx_factory in [partial(jtu.rand_int, high=max(arg_shape))]
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testScatterAdd(self, arg_shape, dtype, idxs, update_shape, dnums,
|
|
rng_factory, rng_idx_factory):
|
|
rng = rng_factory(self.rng())
|
|
rng_idx = rng_idx_factory(self.rng())
|
|
rand_idxs = lambda: rng_idx(idxs.shape, idxs.dtype)
|
|
args_maker = lambda: [rng(arg_shape, dtype), rand_idxs(),
|
|
rng(update_shape, dtype)]
|
|
fun = partial(lax.scatter_add, dimension_numbers=dnums)
|
|
self._CompileAndCheck(fun, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_idxs={}_update={}_dnums={}".format(
|
|
jtu.format_shape_dtype_string(arg_shape, dtype),
|
|
idxs, update_shape, dnums),
|
|
"arg_shape": arg_shape, "dtype": dtype, "idxs": idxs,
|
|
"update_shape": update_shape, "dnums": dnums,
|
|
"rng_factory": rng_factory, "rng_idx_factory": rng_idx_factory}
|
|
for dtype in float_dtypes
|
|
for arg_shape, idxs, update_shape, dnums in [
|
|
((5,), onp.array([[0], [2]]), (2,), lax.ScatterDimensionNumbers(
|
|
update_window_dims=(), inserted_window_dims=(0,),
|
|
scatter_dims_to_operand_dims=(0,))),
|
|
((10,), onp.array([[0], [0], [0]]), (3, 2), lax.ScatterDimensionNumbers(
|
|
update_window_dims=(1,), inserted_window_dims=(),
|
|
scatter_dims_to_operand_dims=(0,))),
|
|
((10, 5,), onp.array([[0], [2], [1]]), (3, 3), lax.ScatterDimensionNumbers(
|
|
update_window_dims=(1,), inserted_window_dims=(0,),
|
|
scatter_dims_to_operand_dims=(0,))),
|
|
]
|
|
for rng_idx_factory in [partial(jtu.rand_int, high=max(arg_shape))]
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testScatterMin(self, arg_shape, dtype, idxs, update_shape, dnums,
|
|
rng_factory, rng_idx_factory):
|
|
rng = rng_factory(self.rng())
|
|
rng_idx = rng_idx_factory(self.rng())
|
|
rand_idxs = lambda: rng_idx(idxs.shape, idxs.dtype)
|
|
args_maker = lambda: [rng(arg_shape, dtype), rand_idxs(),
|
|
rng(update_shape, dtype)]
|
|
fun = partial(lax.scatter_min, dimension_numbers=dnums)
|
|
self._CompileAndCheck(fun, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_idxs={}_update={}_dnums={}".format(
|
|
jtu.format_shape_dtype_string(arg_shape, dtype),
|
|
idxs, update_shape, dnums),
|
|
"arg_shape": arg_shape, "dtype": dtype, "idxs": idxs,
|
|
"update_shape": update_shape, "dnums": dnums,
|
|
"rng_factory": rng_factory, "rng_idx_factory": rng_idx_factory}
|
|
for dtype in float_dtypes
|
|
for arg_shape, idxs, update_shape, dnums in [
|
|
((5,), onp.array([[0], [2]]), (2,), lax.ScatterDimensionNumbers(
|
|
update_window_dims=(), inserted_window_dims=(0,),
|
|
scatter_dims_to_operand_dims=(0,))),
|
|
((10,), onp.array([[0], [0], [0]]), (3, 2), lax.ScatterDimensionNumbers(
|
|
update_window_dims=(1,), inserted_window_dims=(),
|
|
scatter_dims_to_operand_dims=(0,))),
|
|
((10, 5,), onp.array([[0], [2], [1]]), (3, 3), lax.ScatterDimensionNumbers(
|
|
update_window_dims=(1,), inserted_window_dims=(0,),
|
|
scatter_dims_to_operand_dims=(0,))),
|
|
]
|
|
for rng_idx_factory in [partial(jtu.rand_int, high=max(arg_shape))]
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testScatterMax(self, arg_shape, dtype, idxs, update_shape, dnums,
|
|
rng_factory, rng_idx_factory):
|
|
rng = rng_factory(self.rng())
|
|
rng_idx = rng_idx_factory(self.rng())
|
|
rand_idxs = lambda: rng_idx(idxs.shape, idxs.dtype)
|
|
args_maker = lambda: [rng(arg_shape, dtype), rand_idxs(),
|
|
rng(update_shape, dtype)]
|
|
fun = partial(lax.scatter_max, dimension_numbers=dnums)
|
|
self._CompileAndCheck(fun, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_idxs={}_update={}_dnums={}".format(
|
|
jtu.format_shape_dtype_string(arg_shape, dtype),
|
|
idxs, update_shape, dnums),
|
|
"arg_shape": arg_shape, "dtype": dtype, "idxs": idxs,
|
|
"update_shape": update_shape, "dnums": dnums,
|
|
"rng_factory": rng_factory, "rng_idx_factory": rng_idx_factory}
|
|
for dtype in float_dtypes
|
|
for arg_shape, idxs, update_shape, dnums in [
|
|
((5,), onp.array([[0], [2]]), (2,), lax.ScatterDimensionNumbers(
|
|
update_window_dims=(), inserted_window_dims=(0,),
|
|
scatter_dims_to_operand_dims=(0,))),
|
|
((10,), onp.array([[0], [0], [0]]), (3, 2), lax.ScatterDimensionNumbers(
|
|
update_window_dims=(1,), inserted_window_dims=(),
|
|
scatter_dims_to_operand_dims=(0,))),
|
|
((10, 5,), onp.array([[0], [2], [1]]), (3, 3), lax.ScatterDimensionNumbers(
|
|
update_window_dims=(1,), inserted_window_dims=(0,),
|
|
scatter_dims_to_operand_dims=(0,))),
|
|
]
|
|
for rng_idx_factory in [partial(jtu.rand_int, high=max(arg_shape))]
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testScatter(self, arg_shape, dtype, idxs, update_shape, dnums,
|
|
rng_factory, rng_idx_factory):
|
|
rng = rng_factory(self.rng())
|
|
rng_idx = rng_idx_factory(self.rng())
|
|
rand_idxs = lambda: rng_idx(idxs.shape, idxs.dtype)
|
|
args_maker = lambda: [rng(arg_shape, dtype), rand_idxs(),
|
|
rng(update_shape, dtype)]
|
|
fun = partial(lax.scatter, dimension_numbers=dnums)
|
|
self._CompileAndCheck(fun, args_maker)
|
|
|
|
def testIssue831(self):
|
|
# Tests the DeviceTuple constant handler
|
|
def f(x):
|
|
g = lambda *args: args[1]
|
|
return api.jit(lax.fori_loop, static_argnums=(2,))( 0, 10, g, x)
|
|
|
|
api.jit(f)(1.) # doesn't crash
|
|
|
|
def testReshapeWithUnusualShapes(self):
|
|
ans = lax.reshape(onp.ones((3,), onp.float32), (lax.add(1, 2), 1))
|
|
self.assertAllClose(ans, onp.ones((3, 1), onp.float32))
|
|
|
|
self.assertRaisesRegex(
|
|
TypeError,
|
|
"Shapes must be 1D sequences of concrete values of integer type.*",
|
|
lambda: lax.reshape(onp.ones(3,), (onp.array([3, 1]),)))
|
|
|
|
self.assertRaisesRegex(
|
|
TypeError,
|
|
"Shapes must be 1D sequences of concrete values of integer type.*",
|
|
lambda: lax.reshape(onp.ones(3,), (1.5, 2.0)))
|
|
|
|
@jtu.skip_on_devices("tpu") # S16 not supported on TPU
|
|
def testDynamicSliceTypeErrors(self):
|
|
self.assertRaisesRegex(
|
|
TypeError,
|
|
"index arguments to dynamic_slice must be integers of the same type",
|
|
lambda: lax.dynamic_slice(onp.ones((3, 4), dtype=onp.float32),
|
|
(onp.int32(1), onp.int16(2)), (2, 2)))
|
|
|
|
@jtu.skip_on_devices("tpu") # S16 not supported on TPU
|
|
def testDynamicUpdateSliceTypeErrors(self):
|
|
self.assertRaisesRegex(
|
|
TypeError,
|
|
"index arguments to dynamic_update_slice must be integers of the same "
|
|
"type",
|
|
lambda: lax.dynamic_update_slice(onp.ones((3, 4), dtype=onp.float32),
|
|
onp.zeros((2, 2), dtype=onp.float32),
|
|
(onp.int32(1), onp.int16(2))))
|
|
|
|
def test_tie_in_error(self):
|
|
with core.skipping_checks():
|
|
with self.assertRaisesRegex(
|
|
TypeError, ".* of type .*tuple.* is not a valid JAX type"):
|
|
api.make_jaxpr(lambda x: lax.tie_in((x, x), 1))(1.)
|
|
|
|
def test_primitive_jaxtype_error(self):
|
|
with core.skipping_checks():
|
|
with self.assertRaisesRegex(
|
|
TypeError, "Argument .* of type .* is not a valid JAX type"):
|
|
lax.add(1, 'hi')
|
|
|
|
class LazyConstantTest(jtu.JaxTestCase):
|
|
def _Check(self, make_const, expected):
|
|
# check casting to ndarray works
|
|
asarray_result = onp.asarray(make_const())
|
|
|
|
# check passing as an argument works (should hit constant handler)
|
|
zero = onp.array(0, expected.dtype)
|
|
argument_result = lax.add(zero, make_const())
|
|
|
|
# check looping into a compiled computation works
|
|
jit_result = api.jit(lambda x: lax.add(x, make_const()))(zero)
|
|
|
|
# ensure they're all the same
|
|
self.assertAllClose(asarray_result, expected)
|
|
self.assertAllClose(argument_result, expected)
|
|
self.assertAllClose(jit_result, expected)
|
|
|
|
# ensure repr doesn't crash
|
|
repr(make_const())
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_{}_fill={}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype) if dtype else shape,
|
|
fill_value),
|
|
"shape": shape, "dtype": dtype, "fill_value": fill_value}
|
|
for dtype in itertools.chain(default_dtypes, [None])
|
|
for shape in [(), (3,), (2, 3), (2, 3, 4), (1001, 1001)]
|
|
for fill_value in [0, 1, onp.pi]))
|
|
def testFilledConstant(self, shape, fill_value, dtype):
|
|
make_const = lambda: lax.full(shape, fill_value, dtype)
|
|
expected = onp.full(shape, fill_value,
|
|
dtype or dtypes.result_type(fill_value))
|
|
self._Check(make_const, expected)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_{}_dim={}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype), dimension),
|
|
"shape": shape, "dtype": dtype, "dimension": dimension}
|
|
for dtype in default_dtypes
|
|
for shape in [(), (3,), (2, 3), (2, 3, 4),
|
|
# TODO(mattjj): re-enable
|
|
# (1001, 1001), (101, 101, 101),
|
|
]
|
|
for dimension in range(len(shape))))
|
|
def testIotaConstant(self, dtype, shape, dimension):
|
|
make_const = lambda: lax.broadcasted_iota(dtype, shape, dimension)
|
|
|
|
arr = onp.arange(shape[dimension], dtype=dtypes.canonicalize_dtype(dtype))
|
|
singleton_shape = [1] * len(shape)
|
|
singleton_shape[dimension] = shape[dimension]
|
|
expected = onp.broadcast_to(arr.reshape(singleton_shape), shape)
|
|
|
|
self._Check(make_const, expected)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_{}_axes={}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype), axes),
|
|
"shape": shape, "dtype": dtype, "axes": axes}
|
|
for dtype in default_dtypes
|
|
for shape, axes in [
|
|
[(2, 3), (0, 1)],
|
|
[(2, 3, 4), (0, 1)],
|
|
[(2, 3, 4), (0, 2)],
|
|
[(2, 3, 4), (1, 2)],
|
|
[(2, 3, 4), (0, 1, 2)],
|
|
[(2, 3, 4, 2), (0, 1, 2)],
|
|
[(2, 3, 4, 2), (0, 2, 3)],
|
|
[(1001, 1001), (0, 1)],
|
|
]))
|
|
@jtu.skip_on_devices("tpu") # TODO(mattjj): investigate failure
|
|
def testDeltaConstant(self, dtype, shape, axes):
|
|
make_const = lambda: lax._delta(dtype, shape, axes)
|
|
# don't check the asarray case, just assume it's right
|
|
expected = onp.asarray(make_const())
|
|
self._Check(make_const, expected)
|
|
|
|
|
|
GradTestSpec = collections.namedtuple(
|
|
"GradTestSpec",
|
|
["op", "nargs", "order", "rng_factory", "dtypes", "name", "tol"])
|
|
def grad_test_spec(op, nargs, order, rng_factory, dtypes, name=None, tol=None):
|
|
return GradTestSpec(
|
|
op, nargs, order, rng_factory, dtypes, name or op.__name__, tol)
|
|
|
|
grad_float_dtypes = list(jtu.supported_dtypes().intersection(
|
|
{onp.float32, onp.float64}))
|
|
grad_complex_dtypes = list(jtu.supported_dtypes().intersection(
|
|
{onp.complex64, onp.complex128}))
|
|
grad_inexact_dtypes = grad_float_dtypes + grad_complex_dtypes
|
|
|
|
LAX_GRAD_OPS = [
|
|
grad_test_spec(lax.neg, nargs=1, order=2, rng_factory=jtu.rand_default,
|
|
dtypes=grad_inexact_dtypes),
|
|
grad_test_spec(lax.floor, nargs=1, order=2,
|
|
rng_factory=partial(jtu.rand_uniform, low=0.1, high=0.4),
|
|
dtypes=grad_float_dtypes),
|
|
grad_test_spec(lax.ceil, nargs=1, order=2,
|
|
rng_factory=partial(jtu.rand_uniform, low=0.1, high=0.4),
|
|
dtypes=grad_float_dtypes),
|
|
grad_test_spec(lax.round, nargs=1, order=2,
|
|
rng_factory=partial(jtu.rand_uniform, low=0.1, high=0.4),
|
|
dtypes=grad_float_dtypes),
|
|
|
|
grad_test_spec(lax.exp, nargs=1, order=2, rng_factory=jtu.rand_small,
|
|
dtypes=grad_inexact_dtypes),
|
|
grad_test_spec(lax.expm1, nargs=1, order=2, rng_factory=jtu.rand_default,
|
|
dtypes=grad_inexact_dtypes),
|
|
grad_test_spec(lax.log, nargs=1, order=2, rng_factory=jtu.rand_positive,
|
|
dtypes=grad_inexact_dtypes),
|
|
grad_test_spec(lax.log1p, nargs=1, order=2, rng_factory=jtu.rand_positive,
|
|
dtypes=grad_inexact_dtypes),
|
|
grad_test_spec(lax.sinh, nargs=1, order=2, rng_factory=jtu.rand_default,
|
|
dtypes=grad_float_dtypes + [onp.complex64], tol=1e-5),
|
|
grad_test_spec(lax.cosh, nargs=1, order=2, rng_factory=jtu.rand_default,
|
|
dtypes=grad_inexact_dtypes, tol=1e-5),
|
|
grad_test_spec(lax.tanh, nargs=1, order=2, rng_factory=jtu.rand_default,
|
|
dtypes=grad_inexact_dtypes, tol=1e-5),
|
|
grad_test_spec(lax.sin, nargs=1, order=2, rng_factory=jtu.rand_default,
|
|
dtypes=grad_inexact_dtypes, tol={onp.float32: 5e-1}),
|
|
grad_test_spec(lax.cos, nargs=1, order=2, rng_factory=jtu.rand_default,
|
|
dtypes=grad_inexact_dtypes),
|
|
grad_test_spec(lax.tan, nargs=1, order=2,
|
|
rng_factory=partial(jtu.rand_uniform, low=-1.3, high=1.3),
|
|
dtypes=grad_inexact_dtypes, tol=1e-3),
|
|
grad_test_spec(lax.asin, nargs=1, order=2,
|
|
rng_factory=partial(jtu.rand_uniform, low=-1.3, high=1.3),
|
|
dtypes=grad_float_dtypes, tol=1e-3),
|
|
grad_test_spec(lax.acos, nargs=1, order=2,
|
|
rng_factory=partial(jtu.rand_uniform, low=-1.3, high=1.3),
|
|
dtypes=grad_float_dtypes, tol=2e-2),
|
|
# TODO(proteneer): atan2 input is already a representation of a
|
|
# complex number. Need to think harder about what this even means
|
|
# if each input itself is a complex number.
|
|
grad_test_spec(lax.atan2, nargs=2, order=2, rng_factory=jtu.rand_default,
|
|
dtypes=grad_float_dtypes),
|
|
|
|
grad_test_spec(lax.erf, nargs=1, order=2, rng_factory=jtu.rand_small,
|
|
dtypes=grad_float_dtypes),
|
|
grad_test_spec(lax.erfc, nargs=1, order=2, rng_factory=jtu.rand_small,
|
|
dtypes=grad_float_dtypes),
|
|
grad_test_spec(lax.erf_inv, nargs=1, order=2, rng_factory=jtu.rand_small,
|
|
dtypes=grad_float_dtypes),
|
|
# grad_test_spec(lax.lgamma, nargs=1, order=2, rng_factory=jtu.rand_small,
|
|
# dtypes=grad_float_dtypes), # TODO(mattjj): enable
|
|
grad_test_spec(lax.bessel_i0e, nargs=1, order=2, rng_factory=jtu.rand_default,
|
|
dtypes=grad_float_dtypes),
|
|
grad_test_spec(lax.bessel_i1e, nargs=1, order=2, rng_factory=jtu.rand_default,
|
|
dtypes=grad_float_dtypes),
|
|
|
|
grad_test_spec(lax.real, nargs=1, order=2, rng_factory=jtu.rand_default,
|
|
dtypes=grad_complex_dtypes),
|
|
grad_test_spec(lax.imag, nargs=1, order=2, rng_factory=jtu.rand_default,
|
|
dtypes=grad_complex_dtypes),
|
|
grad_test_spec(lax.complex, nargs=2, order=2, rng_factory=jtu.rand_default,
|
|
dtypes=grad_float_dtypes),
|
|
grad_test_spec(lax.conj, nargs=1, order=2, rng_factory=jtu.rand_default,
|
|
dtypes=grad_inexact_dtypes),
|
|
grad_test_spec(lax.abs, nargs=1, order=2, rng_factory=jtu.rand_positive,
|
|
dtypes=grad_inexact_dtypes),
|
|
grad_test_spec(lax.pow, nargs=2, order=2, rng_factory=jtu.rand_positive,
|
|
dtypes=grad_inexact_dtypes, tol={onp.float32: 3e-1}),
|
|
|
|
grad_test_spec(lax.add, nargs=2, order=2, rng_factory=jtu.rand_default,
|
|
dtypes=grad_inexact_dtypes),
|
|
grad_test_spec(lax.sub, nargs=2, order=2, rng_factory=jtu.rand_default,
|
|
dtypes=grad_inexact_dtypes),
|
|
grad_test_spec(lax.mul, nargs=2, order=2, rng_factory=jtu.rand_default,
|
|
dtypes=grad_inexact_dtypes),
|
|
grad_test_spec(lax.div, nargs=2, order=1, rng_factory=jtu.rand_not_small,
|
|
dtypes=grad_inexact_dtypes),
|
|
|
|
grad_test_spec(lax.max, nargs=2, order=2, rng_factory=jtu.rand_default,
|
|
dtypes=grad_float_dtypes),
|
|
grad_test_spec(lax.min, nargs=2, order=2, rng_factory=jtu.rand_default,
|
|
dtypes=grad_float_dtypes),
|
|
# TODO(mattjj): make some-equal checks more robust, enable second-order
|
|
# grad_test_spec(lax.max, nargs=2, order=1, rng_factory=jtu.rand_some_equal,
|
|
# dtypes=grad_float_dtypes, name="MaxSomeEqual"),
|
|
# grad_test_spec(lax.min, nargs=2, order=1, rng_factory=jtu.rand_some_equal,
|
|
# dtypes=grad_float_dtypes, name="MinSomeEqual"),
|
|
]
|
|
|
|
GradSpecialValuesTestSpec = collections.namedtuple(
|
|
"GradSpecialValuesTestSpec", ["op", "values", "tol"])
|
|
def grad_special_values_test_spec(op, values, tol=None):
|
|
return GradSpecialValuesTestSpec(op, values, tol)
|
|
|
|
LAX_GRAD_SPECIAL_VALUE_TESTS = [
|
|
grad_special_values_test_spec(
|
|
lax.sinh, [0.],
|
|
tol={onp.float32: 1e-2} if jtu.device_under_test() == "tpu" else None),
|
|
grad_special_values_test_spec(
|
|
lax.cosh, [0.],
|
|
tol={onp.float32: 1e-2} if jtu.device_under_test() == "tpu" else None),
|
|
grad_special_values_test_spec(lax.tanh, [0., 1000.]),
|
|
grad_special_values_test_spec(lax.sin, [0., onp.pi, onp.pi/2., onp.pi/4.]),
|
|
grad_special_values_test_spec(lax.cos, [0., onp.pi, onp.pi/2., onp.pi/4.]),
|
|
grad_special_values_test_spec(lax.tan, [0.]),
|
|
grad_special_values_test_spec(lax.asin, [0.]),
|
|
grad_special_values_test_spec(lax.acos, [0.]),
|
|
grad_special_values_test_spec(lax.atan, [0., 1000.]),
|
|
grad_special_values_test_spec(lax.erf, [0., 10.]),
|
|
grad_special_values_test_spec(lax.erfc, [0., 10.]),
|
|
]
|
|
|
|
|
|
def check_grads_bilinear(f, args, order,
|
|
modes=["fwd", "rev"], atol=None, rtol=None):
|
|
# Can use large eps to make up for numerical inaccuracies since the op is
|
|
# bilinear (relying on the fact that we only check one arg at a time)
|
|
lhs, rhs = args
|
|
check_grads(lambda lhs: f(lhs, rhs), (lhs,), order,
|
|
modes=modes, atol=atol, rtol=rtol, eps=1.)
|
|
check_grads(lambda rhs: f(lhs, rhs), (rhs,), order,
|
|
modes=modes, atol=atol, rtol=rtol, eps=1.)
|
|
|
|
class LaxAutodiffTest(jtu.JaxTestCase):
|
|
|
|
@parameterized.named_parameters(itertools.chain.from_iterable(
|
|
jtu.cases_from_list(
|
|
{"testcase_name": jtu.format_test_name_suffix(
|
|
rec.name, shapes, itertools.repeat(dtype)),
|
|
"op": rec.op, "rng_factory": rec.rng_factory, "shapes": shapes, "dtype": dtype,
|
|
"order": rec.order, "tol": rec.tol}
|
|
for shape_group in compatible_shapes
|
|
for shapes in CombosWithReplacement(shape_group, rec.nargs)
|
|
for dtype in rec.dtypes)
|
|
for rec in LAX_GRAD_OPS))
|
|
def testOpGrad(self, op, rng_factory, shapes, dtype, order, tol):
|
|
rng = rng_factory(self.rng())
|
|
if jtu.device_under_test() == "tpu" and op is lax.pow:
|
|
raise SkipTest("pow grad imprecise on tpu")
|
|
tol = jtu.join_tolerance(1e-1, tol) if num_float_bits(dtype) == 32 else tol
|
|
args = tuple(rng(shape, dtype) for shape in shapes)
|
|
check_grads(op, args, order, ["fwd", "rev"], tol, tol)
|
|
|
|
@parameterized.named_parameters(itertools.chain.from_iterable(
|
|
jtu.cases_from_list(
|
|
{"testcase_name": "_{}_{}".format(rec.op.__name__, special_value),
|
|
"op": rec.op, "special_value": special_value, "tol": rec.tol}
|
|
for special_value in rec.values)
|
|
for rec in LAX_GRAD_SPECIAL_VALUE_TESTS))
|
|
def testOpGradSpecialValue(self, op, special_value, tol):
|
|
check_grads(op, (special_value,), 2, ["fwd", "rev"], rtol=tol, atol=tol)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_from_dtype={}_to_dtype={}".format(
|
|
jtu.dtype_str(from_dtype), jtu.dtype_str(to_dtype)),
|
|
"from_dtype": from_dtype, "to_dtype": to_dtype, "rng_factory": rng_factory}
|
|
for from_dtype, to_dtype in itertools.product(
|
|
float_dtypes + complex_dtypes, repeat=2)
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testConvertElementTypeGrad(self, from_dtype, to_dtype, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
tol = max(jtu.tolerance(to_dtype, jtu.default_gradient_tolerance),
|
|
jtu.tolerance(from_dtype, jtu.default_gradient_tolerance))
|
|
args = (rng((2, 3), from_dtype),)
|
|
convert_element_type = lambda x: lax.convert_element_type(x, to_dtype)
|
|
convert_element_type = jtu.ignore_warning(category=onp.ComplexWarning)(
|
|
convert_element_type)
|
|
check_grads(convert_element_type, args, 2, ["fwd", "rev"], tol, tol, eps=1.)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype)),
|
|
"shape": shape, "dtype": dtype,
|
|
"rng_factory": rng_factory}
|
|
for shape in [(), (2, 3)]
|
|
for dtype in grad_float_dtypes
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testClampGrad(self, shape, dtype, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
operand = rng(shape, dtype)
|
|
low = operand - dtype(10)
|
|
high = operand + dtype(10)
|
|
# Avoids points near the boundary where the gradient may be inaccurate.
|
|
check_grads(lax.clamp, (operand, low, high), 2, ["fwd", "rev"], eps=1e-2)
|
|
check_grads(lax.clamp, (low, operand, high), 2, ["fwd", "rev"], eps=1e-2)
|
|
check_grads(lax.clamp, (low, high, operand), 2, ["fwd", "rev"], eps=1e-2)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_dim={}_baseshape=[{}]_dtype={}_narrs={}".format(
|
|
dim, ",".join(str(d) for d in base_shape), onp.dtype(dtype).name,
|
|
num_arrs),
|
|
"dim": dim, "base_shape": base_shape, "dtype": dtype,
|
|
"num_arrs": num_arrs, "rng_factory": rng_factory}
|
|
for num_arrs in [3]
|
|
for dtype in float_dtypes
|
|
for base_shape in [(4,), (3, 4), (2, 3, 4)]
|
|
for dim in range(len(base_shape))
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testConcatenateGrad(self, dim, base_shape, dtype, num_arrs, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
shapes = [base_shape[:dim] + (size,) + base_shape[dim+1:]
|
|
for size, _ in zip(itertools.cycle([3, 1, 4]), range(num_arrs))]
|
|
operands = tuple(rng(shape, dtype) for shape in shapes)
|
|
concatenate = lambda *args: lax.concatenate(args, dim)
|
|
check_grads(concatenate, operands, 2, ["fwd", "rev"], eps=1.)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name":
|
|
"_lhs_shape={}_rhs_shape={}_strides={}_padding={}"
|
|
.format(jtu.format_shape_dtype_string(lhs_shape, dtype),
|
|
jtu.format_shape_dtype_string(rhs_shape, dtype),
|
|
strides, padding),
|
|
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
|
|
"strides": strides, "padding": padding, "rng_factory": rng_factory,}
|
|
for lhs_shape, rhs_shape, all_strides in itertools.chain(
|
|
[((b, i, 3, 4), (j, i, 1, 2), [(1, 1), (1, 2), (2, 1)])
|
|
for b, i, j in itertools.product([2, 3], repeat=3)],
|
|
[((4, 2, 1), (3, 2, 1), [(1,)])])
|
|
for strides in all_strides
|
|
for dtype in float_dtypes
|
|
for padding in ["VALID", "SAME"]
|
|
for rng_factory in [jtu.rand_small]))
|
|
def testConvGrad(self, lhs_shape, rhs_shape, dtype, strides, padding, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
lhs = rng(lhs_shape, dtype)
|
|
rhs = rng(rhs_shape, dtype)
|
|
conv = partial(lax.conv, window_strides=strides, padding=padding,
|
|
precision=lax.Precision.HIGHEST)
|
|
check_grads_bilinear(conv, (lhs, rhs), order=2, modes=["fwd", "rev"],
|
|
atol=1e-2, rtol=1e-2)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name":
|
|
"_lhs_shape={}_rhs_shape={}_strides={}_padding={}_lhs_dilation={}_"
|
|
"rhs_dilation={}"
|
|
.format(jtu.format_shape_dtype_string(lhs_shape, dtype),
|
|
jtu.format_shape_dtype_string(rhs_shape, dtype),
|
|
strides, padding, lhs_dil, rhs_dil),
|
|
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
|
|
"strides": strides, "padding": padding, "lhs_dil": lhs_dil,
|
|
"rhs_dil": rhs_dil, "rng_factory": rng_factory}
|
|
for lhs_shape, rhs_shape, all_strides, all_pads, lhs_dils, rhs_dils in
|
|
itertools.chain(
|
|
[((b, i, 3, 4), (j, i, 1, 2), [(1, 1), (1, 2), (2, 1)],
|
|
[((0, 0), (0, 0)), ((-1, 0), (0, -1)), ((1, 0), (0, 1))],
|
|
[(1, 1), (2, 1)], [(1, 1)])
|
|
for b, i, j in itertools.product([2, 3], repeat=3)],
|
|
[((4, 2, 1), (3, 2, 1), [(1,)], [((1, 1),), ((0, 0),)],
|
|
[(1,), (2,)], [(1,), (2,)])])
|
|
for strides in all_strides
|
|
for rhs_dil in rhs_dils
|
|
for lhs_dil in lhs_dils
|
|
for dtype in float_dtypes
|
|
for padding in all_pads
|
|
for rng_factory in [jtu.rand_small]))
|
|
def testConvWithGeneralPaddingGrad(self, lhs_shape, rhs_shape, dtype, strides,
|
|
padding, lhs_dil, rhs_dil, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
lhs = rng(lhs_shape, dtype)
|
|
rhs = rng(rhs_shape, dtype)
|
|
conv = partial(lax.conv_with_general_padding, window_strides=strides,
|
|
padding=padding, lhs_dilation=lhs_dil, rhs_dilation=rhs_dil,
|
|
precision=lax.Precision.HIGHEST)
|
|
check_grads_bilinear(conv, (lhs, rhs), order=2, modes=["fwd", "rev"],
|
|
atol=1e-2, rtol=1e-2)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name":
|
|
"_lhs_shape={}_rhs_shape={}_strides={}_padding={}_lhs_dilation={}_"
|
|
"rhs_dilation={}_dims={}_feature_group_count={}_batch_group_count={}"
|
|
.format(jtu.format_shape_dtype_string(lhs_shape, dtype),
|
|
jtu.format_shape_dtype_string(rhs_shape, dtype),
|
|
strides, padding, lhs_dil, rhs_dil, ",".join(dim_nums),
|
|
feature_group_count, batch_group_count),
|
|
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
|
|
"strides": strides, "padding": padding, "lhs_dil": lhs_dil,
|
|
"rhs_dil": rhs_dil, "rng_factory": rng_factory, "dimension_numbers": dim_nums,
|
|
"perms": perms, "feature_group_count": feature_group_count,
|
|
"batch_group_count": batch_group_count}
|
|
for batch_group_count, feature_group_count in ([(1, 1), (2, 1), (1, 2)])
|
|
for lhs_shapes, rhs_shape, all_strides, lhs_dils, rhs_dils in [
|
|
([(b * batch_group_count, i * feature_group_count, 6, 7),
|
|
(b * batch_group_count, i * feature_group_count, 0, 4)], # lhs_shape
|
|
(j * batch_group_count * feature_group_count, i, 1, 2), # rhs_shape
|
|
[(1, 1), (1, 2), (2, 1)], # strides
|
|
[(1, 1), (2, 1)], # lhs_dils
|
|
[(1, 1), (2, 2)]) # rhs_dils
|
|
for b, i, j in itertools.product([1, 2], repeat=3)]
|
|
for lhs_shape in lhs_shapes
|
|
for strides in all_strides
|
|
for rhs_dil in rhs_dils
|
|
for lhs_dil in lhs_dils
|
|
for dtype in grad_float_dtypes
|
|
for padding in ([((0, 0), (0, 0)), ((1, 0), (0, 1))] +
|
|
([((0, -1), (0, 0))] if lhs_shape[2] != 0 else []))
|
|
for dim_nums, perms in [
|
|
(("NCHW", "OIHW", "NCHW"), ([0, 1, 2, 3], [0, 1, 2, 3])),
|
|
(("NHWC", "HWIO", "NHWC"), ([0, 2, 3, 1], [2, 3, 1, 0])),
|
|
(("NHWC", "OIHW", "NCHW"), ([0, 2, 3, 1], [0, 1, 2, 3]))]
|
|
for rng_factory in [jtu.rand_default]
|
|
))
|
|
def testConvGeneralDilatedGrad(self, lhs_shape, rhs_shape, dtype, strides,
|
|
padding, lhs_dil, rhs_dil, dimension_numbers,
|
|
perms, feature_group_count, batch_group_count,
|
|
rng_factory):
|
|
if dtype == onp.float16:
|
|
raise SkipTest("float16 numerical issues") # TODO(mattjj): resolve
|
|
|
|
rng = rng_factory(self.rng())
|
|
tol = {dtypes.bfloat16: 1e-0, onp.float16: 5e-1, onp.float32: 2e-4}
|
|
|
|
# permute shapes to match dim_spec, scale by feature_group_count
|
|
lhs_perm, rhs_perm = perms
|
|
lhs_shape = list(onp.take(lhs_shape, lhs_perm))
|
|
rhs_shape = list(onp.take(rhs_shape, rhs_perm))
|
|
|
|
lhs = rng(lhs_shape, dtype)
|
|
rhs = rng(rhs_shape, dtype)
|
|
conv = partial(lax.conv_general_dilated, window_strides=strides,
|
|
padding=padding, lhs_dilation=lhs_dil, rhs_dilation=rhs_dil,
|
|
dimension_numbers=dimension_numbers,
|
|
feature_group_count=feature_group_count,
|
|
batch_group_count=batch_group_count,
|
|
precision=lax.Precision.HIGHEST)
|
|
check_grads_bilinear(conv, (lhs, rhs), order=2, modes=["fwd", "rev"],
|
|
atol=tol, rtol=tol)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_lhs_shape={}_rhs_shape={}".format(
|
|
jtu.format_shape_dtype_string(lhs_shape, dtype),
|
|
jtu.format_shape_dtype_string(rhs_shape, dtype)),
|
|
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
|
|
"rng_factory": jtu.rand_default}
|
|
for lhs_shape in [(2,), (3, 2)] for rhs_shape in [(2,), (2, 4)]
|
|
for dtype in float_dtypes))
|
|
def testDotGrad(self, lhs_shape, rhs_shape, dtype, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
tol = {onp.float16: 1e-1, onp.float32: 1e-4}
|
|
lhs = rng(lhs_shape, dtype)
|
|
rhs = rng(rhs_shape, dtype)
|
|
dot = partial(lax.dot, precision=lax.Precision.HIGHEST)
|
|
check_grads_bilinear(dot, (lhs, rhs), order=2, modes=["fwd", "rev"],
|
|
atol=tol, rtol=tol)
|
|
# check that precision config is preserved
|
|
result, pullback = api.vjp(dot, lhs, rhs)
|
|
gresult = lax.zeros_like_array(result)
|
|
s = str(api.make_jaxpr(pullback)(gresult))
|
|
assert "precision=HIGHEST" in s
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name":
|
|
"_lhs_shape={}_rhs_shape={}_dimension_numbers={}"
|
|
.format(jtu.format_shape_dtype_string(lhs_shape, dtype),
|
|
jtu.format_shape_dtype_string(rhs_shape, dtype),
|
|
dimension_numbers),
|
|
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
|
|
"dimension_numbers": dimension_numbers, "rng_factory": jtu.rand_small}
|
|
for lhs_shape, rhs_shape, dimension_numbers in [
|
|
((3, 2), (2, 4), (([1], [0]), ([], []))),
|
|
((3, 5), (2, 5), (([1], [1]), ([], []))),
|
|
((5, 3), (5, 2), (([0], [0]), ([], []))),
|
|
((3, 3, 2), (3, 2, 4), (([2], [1]), ([0], [0]))),
|
|
]
|
|
for dtype in float_dtypes))
|
|
def testDotGeneralContractAndBatchGrads(self, lhs_shape, rhs_shape, dtype,
|
|
dimension_numbers, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
lhs = rng(lhs_shape, dtype)
|
|
rhs = rng(rhs_shape, dtype)
|
|
dot_general = partial(lax.dot_general, dimension_numbers=dimension_numbers,
|
|
precision=lax.Precision.HIGHEST)
|
|
check_grads_bilinear(dot_general, (lhs, rhs), order=2, modes=["fwd", "rev"])
|
|
# check that precision config is preserved
|
|
result, pullback = api.vjp(dot_general, lhs, rhs)
|
|
gresult = lax.zeros_like_array(result)
|
|
s = str(api.make_jaxpr(pullback)(gresult))
|
|
assert "precision=HIGHEST" in s
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_dtype={}_broadcast_sizes={}".format(
|
|
shape, onp.dtype(dtype).name, broadcast_sizes),
|
|
"shape": shape, "dtype": dtype, "broadcast_sizes": broadcast_sizes,
|
|
"rng_factory": rng_factory}
|
|
for shape in [(), (2, 3)]
|
|
for dtype in float_dtypes
|
|
for broadcast_sizes in [(), (2,), (1, 2)]
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testBroadcastGrad(self, shape, dtype, broadcast_sizes, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
args = (rng(shape, dtype),)
|
|
broadcast = lambda x: lax.broadcast(x, broadcast_sizes)
|
|
check_grads(broadcast, args, 2, ["fwd", "rev"], eps=1.)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_inshape={}_outshape={}_bcdims={}".format(
|
|
jtu.format_shape_dtype_string(inshape, dtype),
|
|
outshape, broadcast_dimensions),
|
|
"inshape": inshape, "dtype": dtype, "outshape": outshape,
|
|
"dimensions": broadcast_dimensions, "rng_factory": rng_factory}
|
|
for inshape, outshape, broadcast_dimensions in [
|
|
([2], [2, 2], [0]),
|
|
([2], [2, 2], [1]),
|
|
([2], [2, 3], [0]),
|
|
([], [2, 3], []),
|
|
]
|
|
for dtype in float_dtypes
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testBroadcastInDimGrad(self, inshape, dtype, outshape, dimensions, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
operand = rng(inshape, dtype)
|
|
broadcast_in_dim = lambda x: lax.broadcast_in_dim(x, outshape, dimensions)
|
|
check_grads(broadcast_in_dim, (operand,), 2, ["fwd", "rev"], eps=1.)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_inshape={}_outshape={}_perm={}".format(
|
|
jtu.format_shape_dtype_string(arg_shape, dtype),
|
|
jtu.format_shape_dtype_string(out_shape, dtype),
|
|
permutation),
|
|
"arg_shape": arg_shape, "out_shape": out_shape, "dtype": dtype,
|
|
"rng_factory": rng_factory, "permutation": permutation}
|
|
for dtype in float_dtypes
|
|
for arg_shape, out_shape, permutation in [
|
|
[(3, 4), (12,), None],
|
|
[(2, 1, 4), (8,), None],
|
|
[(2, 2, 4), (2, 8), None],
|
|
[(3, 4), (12,), (0, 1)],
|
|
[(3, 4), (12,), (1, 0)],
|
|
[(2, 1, 4), (8,), (0, 2, 1)],
|
|
[(2, 1, 4), (8,), (2, 0, 1)],
|
|
[(2, 2, 4), (2, 8), (0, 2, 1)],
|
|
[(2, 2, 4), (2, 8), (2, 0, 1)],
|
|
]
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testReshapeGrad(self, arg_shape, out_shape, permutation, dtype, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
operand = rng(arg_shape, dtype)
|
|
reshape = lambda x: lax.reshape(x, out_shape, permutation)
|
|
check_grads(reshape, (operand,), 2, ["fwd", "rev"], eps=1.)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_inshape={}_pads={}"
|
|
.format(jtu.format_shape_dtype_string(shape, dtype), pads),
|
|
"shape": shape, "dtype": dtype, "pads": pads, "rng_factory": jtu.rand_small}
|
|
for shape in [(2, 3)]
|
|
for dtype in float_dtypes
|
|
for pads in [[(1, 2, 1), (0, 1, 0)], [(-1, 0, 0), (-1, 0, 2)]]))
|
|
def testPadGrad(self, shape, dtype, pads, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
operand = rng(shape, dtype)
|
|
pad = lambda operand: lax.pad(operand, onp.array(0, dtype), pads)
|
|
check_grads(pad, (operand,), 2, ["fwd", "rev"], eps=1.)
|
|
|
|
operand = rng(shape, dtype)
|
|
padding_value = onp.array(0., dtype)
|
|
pad = lambda operand, padding_value: lax.pad(operand, padding_value, pads)
|
|
check_grads(pad, (operand, padding_value), 2, ["fwd", "rev"], eps=1.)
|
|
|
|
def testReverseGrad(self):
|
|
rev = lambda operand: lax.rev(operand, dimensions)
|
|
|
|
dimensions = [0]
|
|
check_grads(rev, (onp.array([3., 2., 1.]),), 2)
|
|
|
|
dimensions = [0, 1]
|
|
check_grads(rev, (onp.array([[6., 5., 4.], [3., 2., 1.]]),), 2,
|
|
rtol={onp.float32: 3e-3})
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_predshape={}_argshapes={}".format(
|
|
jtu.format_shape_dtype_string(pred_shape, onp.bool_),
|
|
jtu.format_shape_dtype_string(arg_shape, dtype)),
|
|
"pred_shape": pred_shape, "arg_shape": arg_shape, "dtype": dtype,
|
|
"rng_factory": rng_factory}
|
|
for arg_shape in [(), (3,), (2, 3)]
|
|
for pred_shape in ([(), arg_shape] if arg_shape else [()])
|
|
for dtype in float_dtypes
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testSelectGrad(self, pred_shape, arg_shape, dtype, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
pred = rng(pred_shape, onp.bool_)
|
|
on_true = rng(arg_shape, dtype)
|
|
on_false = rng(arg_shape, dtype)
|
|
select = lambda on_true, on_false: lax.select(pred, on_true, on_false)
|
|
check_grads(select, (on_true, on_false), 2, ["fwd", "rev"], eps=1.)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name":
|
|
"_shape={}_start_indices={}_limit_indices={}_strides={}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype),
|
|
start_indices, limit_indices, strides),
|
|
"shape": shape, "dtype": dtype, "starts": start_indices,
|
|
"limits": limit_indices, "strides": strides, "rng_factory": rng_factory}
|
|
for shape, start_indices, limit_indices, strides in [
|
|
[(3,), (1,), (2,), None],
|
|
[(7,), (4,), (7,), None],
|
|
[(5,), (1,), (5,), (2,)],
|
|
[(8,), (1,), (6,), (2,)],
|
|
[(5, 3), (1, 1), (3, 2), None],
|
|
[(5, 3), (1, 1), (3, 1), None],
|
|
[(7, 5, 3), (4, 0, 1), (7, 1, 3), None],
|
|
[(5, 3), (1, 1), (2, 1), (1, 1)],
|
|
[(5, 3), (1, 1), (5, 3), (2, 1)],
|
|
]
|
|
for dtype in float_dtypes
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testSliceGrad(self, shape, dtype, starts, limits, strides, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
operand = rng(shape, dtype)
|
|
slice = lambda x: lax.slice(x, starts, limits, strides)
|
|
check_grads(slice, (operand,), 2, ["fwd", "rev"], eps=1.)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_start_indices={}_size_indices={}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype),
|
|
start_indices, size_indices),
|
|
"shape": shape, "dtype": dtype, "start_indices": start_indices,
|
|
"size_indices": size_indices, "rng_factory": rng_factory}
|
|
for shape, start_indices, size_indices in [
|
|
[(3,), (1,), (1,)],
|
|
[(5, 3), (1, 1), (3, 1)],
|
|
[(7, 5, 3), (4, 1, 0), (2, 0, 1)],
|
|
]
|
|
for dtype in float_dtypes
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testDynamicSliceGrad(self, shape, dtype, start_indices, size_indices,
|
|
rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
operand = rng(shape, dtype)
|
|
dynamic_slice = lambda x: lax.dynamic_slice(x, start_indices, size_indices)
|
|
check_grads(dynamic_slice, (operand,), 2, ["fwd", "rev"], eps=1.)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_start_indices={}_update_shape={}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype),
|
|
start_indices, update_shape),
|
|
"shape": shape, "dtype": dtype, "start_indices": start_indices,
|
|
"update_shape": update_shape, "rng_factory": rng_factory}
|
|
for shape, start_indices, update_shape in [
|
|
[(3,), (1,), (1,)],
|
|
[(5, 3), (1, 1), (3, 1)],
|
|
[(7, 5, 3), (4, 1, 0), (2, 0, 1)],
|
|
]
|
|
for dtype in float_dtypes
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testDynamicUpdateSliceGrad(self, shape, dtype, start_indices,
|
|
update_shape, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
operand = rng(shape, dtype)
|
|
update = rng(update_shape, dtype)
|
|
start_indices = onp.array(start_indices)
|
|
|
|
dus = lambda x, y: lax.dynamic_update_slice(x, y, start_indices)
|
|
check_grads(dus, (operand, update), 2, ["fwd", "rev"], eps=1.)
|
|
|
|
dus = lambda x: lax.dynamic_update_slice(x, update, start_indices)
|
|
check_grads(dus, (operand,), 2, ["fwd", "rev"], eps=1.)
|
|
|
|
dus = lambda y: lax.dynamic_update_slice(operand, y, start_indices)
|
|
check_grads(dus, (update,), 2, ["fwd", "rev"], eps=1.)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_perm={}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype), perm),
|
|
"shape": shape, "dtype": dtype, "perm": perm, "rng_factory": rng_factory}
|
|
for shape, perm in [
|
|
[(3, 4), (1, 0)],
|
|
[(3, 4), (0, 1)],
|
|
[(3, 4, 5), (2, 1, 0)],
|
|
[(3, 4, 5), (1, 0, 2)],
|
|
]
|
|
for dtype in float_dtypes
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testTransposeGrad(self, shape, dtype, perm, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
operand = rng(shape, dtype)
|
|
transpose = lambda x: lax.transpose(x, perm)
|
|
check_grads(transpose, (operand,), 2, ["fwd", "rev"], eps=1.)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_op={}_inshape={}_reducedims={}"
|
|
.format(op.__name__, jtu.format_shape_dtype_string(shape, dtype), dims),
|
|
"op": op, "init_val": init_val, "shape": shape, "dtype": dtype,
|
|
"dims": dims, "rng_factory": rng_factory}
|
|
for init_val, op, dtypes, rng_factory in [
|
|
(0, lax.add, inexact_dtypes, jtu.rand_default),
|
|
(-onp.inf, lax.max, grad_inexact_dtypes, jtu.rand_unique_int),
|
|
(onp.inf, lax.min, grad_inexact_dtypes, jtu.rand_unique_int),
|
|
(1, lax.mul, grad_float_dtypes, partial(jtu.rand_default, scale=1)),
|
|
]
|
|
for dtype in dtypes
|
|
for shape, dims in [
|
|
[(3, 4, 5), ()],
|
|
[(3, 4, 5), (0,)],
|
|
[(3, 4, 5), (1, 2)],
|
|
[(3, 4, 5), (0, 2)],
|
|
[(3, 4, 5), (0, 1, 2)],
|
|
[(3, 1), (1,)],
|
|
]))
|
|
def testReduceGrad(self, op, init_val, shape, dtype, dims, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
if jtu.device_under_test() == "tpu" and op is lax.mul:
|
|
raise SkipTest("unimplemented case")
|
|
tol = {dtypes.bfloat16: 2e-1, onp.float16: 1e-1, onp.float32: 1e-1,
|
|
onp.float64: 1e-3, onp.complex64: 1e-1}
|
|
operand = rng(shape, dtype)
|
|
init_val = onp.asarray(init_val, dtype=dtype)
|
|
reduce = lambda operand: lax.reduce(operand, init_val, op, dims)
|
|
eps = (1.0 if dtypes.finfo(dtype).bits == 16 and op is lax.add else
|
|
1e-1 if dtype == dtypes.bfloat16 else
|
|
1e-2 if dtypes.finfo(dtype).bits == 32 else None)
|
|
check_grads(reduce, (operand,), 2, ["fwd", "rev"], tol, tol, eps)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_op={}_dtype={}_padding={}"
|
|
.format(op.__name__, onp.dtype(dtype).name, padding),
|
|
"op": op, "init_val": init_val, "dtype": dtype, "padding": padding,
|
|
"rng_factory": rng_factory}
|
|
for init_val, op, dtypes, rng_factory in [
|
|
(0, lax.add, grad_float_dtypes, jtu.rand_small),
|
|
(-onp.inf, lax.max, grad_float_dtypes, jtu.rand_unique_int),
|
|
(onp.inf, lax.min, grad_float_dtypes, jtu.rand_unique_int),
|
|
]
|
|
for dtype in dtypes
|
|
for padding in ["VALID", "SAME"]))
|
|
@jtu.skip_on_flag("jax_skip_slow_tests", True)
|
|
@jtu.ignore_warning(category=UserWarning,
|
|
message="Using reduced precision for gradient.*")
|
|
def testReduceWindowGrad(self, op, init_val, dtype, padding, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
init_val = onp.asarray(init_val, dtype=dtype)
|
|
|
|
# We need this conditional and the corresponding loop logic to be in the
|
|
# test method, rather than at the parameterized test level, because it
|
|
# depends on FLAGS for the device under test.
|
|
# TODO(b/31565929): enable when fixed.
|
|
if jtu.device_under_test() == "tpu" and op is not lax.add:
|
|
all_configs = [((6, 5, 4, 3), (2, 2, 1, 1), (1, 2, 1, 1))]
|
|
|
|
# TODO(b/73062247): need variadic reduce-window for better precision.
|
|
gradient_order = 1
|
|
else:
|
|
all_configs = itertools.chain(
|
|
itertools.product(
|
|
[(4, 6)], # shapes
|
|
[(2, 1), (1, 2)], # window_dimensions
|
|
[(1, 1), (2, 1), (1, 2)] # strides
|
|
),
|
|
itertools.product(
|
|
[(3, 2, 4, 6)], # shapes
|
|
[(1, 1, 2, 1), (2, 1, 2, 1)], # window_dimensions
|
|
[(1, 2, 2, 1), (1, 1, 1, 1)]), # strides
|
|
)
|
|
gradient_order = 3
|
|
|
|
def fun(operand):
|
|
return lax.reduce_window(operand, init_val, op, dims, strides, padding)
|
|
|
|
for shape, dims, strides in all_configs:
|
|
operand = rng(shape, dtype)
|
|
if op is lax.add:
|
|
eps = 1.
|
|
tol = None
|
|
else:
|
|
# this test can fail if there are duplicates in operand
|
|
self.assertEqual(onp.unique(operand).size, operand.size,
|
|
msg="test requires operand elements to be unique.")
|
|
eps = 1e-2
|
|
tol = {onp.float16: 1e-1, onp.float32: 6e-2, onp.float64: 6e-2}
|
|
check_grads(fun, (operand,), gradient_order, ["fwd", "rev"], tol, tol,
|
|
eps)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_op={}_shape={}_axis={}"
|
|
.format(op.__name__, jtu.format_shape_dtype_string(shape, dtype), axis),
|
|
"op": op, "shape": shape, "dtype": dtype,
|
|
"axis": axis, "rng_factory": rng_factory}
|
|
for op, types in [
|
|
(lax.cumsum, [onp.float32, onp.float64]),
|
|
(lax.cumprod, [onp.float32, onp.float64]),
|
|
]
|
|
for dtype in types
|
|
for shape in [[10], [3, 4, 5]]
|
|
for axis in range(len(shape))
|
|
for rng_factory in [
|
|
jtu.rand_default if dtypes.issubdtype(dtype, onp.integer)
|
|
else jtu.rand_small]))
|
|
def testCumulativeReduceGrad(self, op, shape, dtype, axis, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
check_grads(partial(op, axis=axis), (rng(shape, dtype),), order=2)
|
|
|
|
|
|
# TODO(b/205052657): enable more tests when supported
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_axis={}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype), axis),
|
|
"rng_factory": rng_factory, "shape": shape, "dtype": dtype, "axis": axis}
|
|
for dtype in [onp.float32]
|
|
for shape in [(5,), (5, 7)]
|
|
for axis in [len(shape) - 1]
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testSortGrad(self, shape, dtype, axis, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
operand = rng(shape, dtype)
|
|
sort = lambda x: lax.sort(x, dimension=axis)
|
|
check_grads(sort, (operand,), 2, ["fwd", "rev"], eps=1e-2)
|
|
|
|
# TODO(b/205052657): enable more tests when supported
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_keyshape={}_valshape={}_axis={}".format(
|
|
jtu.format_shape_dtype_string(shape, key_dtype),
|
|
jtu.format_shape_dtype_string(shape, val_dtype),
|
|
axis),
|
|
"rng_factory": rng_factory, "shape": shape,
|
|
"key_dtype": key_dtype, "val_dtype": val_dtype, "axis": axis}
|
|
for key_dtype in [onp.float32]
|
|
for val_dtype in [onp.float32]
|
|
for shape in [(3,), (5, 3)]
|
|
for axis in [len(shape) - 1]
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testSortKeyValGrad(self, shape, key_dtype, val_dtype, axis, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
# This test relies on the property that wherever keys are tied, values are
|
|
# too, since we don't guarantee the same ordering of values with equal keys.
|
|
# To avoid that case, we generate unique keys (globally in the key array).
|
|
def args_maker():
|
|
flat_keys = onp.arange(onp.prod(shape, dtype=int), dtype=key_dtype)
|
|
keys = self.rng().permutation(flat_keys).reshape(shape)
|
|
values = rng(shape, val_dtype)
|
|
return keys, values
|
|
keys, values = args_maker()
|
|
|
|
fun = lambda keys, values: lax.sort_key_val(keys, values, axis)
|
|
check_grads(fun, (keys, values), 2, ["fwd", "rev"], 1e-2, 1e-2, 1e-2)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_k={}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype), k),
|
|
"rng_factory": rng_factory, "shape": shape, "dtype": dtype, "k": k}
|
|
for dtype in [onp.float32,]
|
|
for shape in [(4,), (5, 5), (2, 1, 4)]
|
|
for k in [1, 3]
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testTopKGrad(self, shape, dtype, k, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
flat_values = onp.arange(onp.prod(shape, dtype=int), dtype=dtype)
|
|
values = self.rng().permutation(flat_values).reshape(shape)
|
|
fun = lambda vs: lax.top_k(vs, k=k)[0]
|
|
check_grads(fun, (values,), 2, ["fwd", "rev"], eps=1e-2)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_idxs={}_axes={}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype), idxs, axes),
|
|
"shape": shape, "dtype": dtype, "idxs": idxs, "axes": axes,
|
|
"rng_factory": rng_factory}
|
|
for dtype in float_dtypes
|
|
for shape, idxs, axes in [
|
|
[(3, 4, 5), (onp.array([0, 2, 1]),), (0,)],
|
|
[(3, 4, 5), (onp.array([-1, -2]),), (0,)],
|
|
[(3, 4, 5), (onp.array([0, 2]), onp.array([1, 3])), (0, 1)],
|
|
[(3, 4, 5), (onp.array([0, 2]), onp.array([1, 3])), (0, 2)],
|
|
]
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testIndexTakeGrad(self, shape, dtype, idxs, axes, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
src = rng(shape, dtype)
|
|
index_take = lambda src: lax.index_take(src, idxs, axes)
|
|
check_grads(index_take, (src,), 2, ["fwd", "rev"], eps=1.)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_idxs={}_dnums={}_slice_sizes={}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype), idxs, dnums,
|
|
slice_sizes),
|
|
"shape": shape, "dtype": dtype, "idxs": idxs, "dnums": dnums,
|
|
"slice_sizes": slice_sizes, "rng_factory": rng_factory,
|
|
"rng_idx_factory": rng_idx_factory}
|
|
for dtype in grad_float_dtypes
|
|
for shape, idxs, dnums, slice_sizes, max_idx in [
|
|
((5,), onp.array([[0], [2]]), lax.GatherDimensionNumbers(
|
|
offset_dims=(), collapsed_slice_dims=(0,), start_index_map=(0,)),
|
|
(1,), 5),
|
|
((10,), onp.array([[0], [0], [0]]), lax.GatherDimensionNumbers(
|
|
offset_dims=(1,), collapsed_slice_dims=(), start_index_map=(0,)),
|
|
(2,), 9),
|
|
((10, 5,), onp.array([[0], [2], [1]]), lax.GatherDimensionNumbers(
|
|
offset_dims=(1,), collapsed_slice_dims=(0,), start_index_map=(0,)),
|
|
(1, 3), 3),
|
|
]
|
|
for rng_idx_factory in [partial(jtu.rand_int, high=max_idx)]
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testGatherGrad(self, shape, dtype, idxs, dnums, slice_sizes, rng_factory,
|
|
rng_idx_factory):
|
|
rng = rng_factory(self.rng())
|
|
rng_idx = rng_idx_factory(self.rng())
|
|
idxs = rng_idx(idxs.shape, idxs.dtype)
|
|
gather = lambda x: lax.gather(x, idxs, dimension_numbers=dnums,
|
|
slice_sizes=slice_sizes)
|
|
x = rng(shape, dtype)
|
|
check_grads(gather, (x,), 2, ["fwd", "rev"], 1e-2, 1e-2, 1.)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_idxs={}_update={}_dnums={}".format(
|
|
jtu.format_shape_dtype_string(arg_shape, dtype),
|
|
idxs, update_shape, dnums),
|
|
"arg_shape": arg_shape, "dtype": dtype, "idxs": idxs,
|
|
"update_shape": update_shape, "dnums": dnums, "rng_factory": rng_factory,
|
|
"rng_idx_factory": rng_idx_factory}
|
|
for dtype in grad_float_dtypes
|
|
for arg_shape, idxs, update_shape, dnums, max_idx in [
|
|
((5,), onp.array([[0], [2]]), (2,), lax.ScatterDimensionNumbers(
|
|
update_window_dims=(), inserted_window_dims=(0,),
|
|
scatter_dims_to_operand_dims=(0,)), 4),
|
|
((10,), onp.array([[0], [0], [0]]), (3, 2), lax.ScatterDimensionNumbers(
|
|
update_window_dims=(1,), inserted_window_dims=(),
|
|
scatter_dims_to_operand_dims=(0,)), 9),
|
|
((10, 5,), onp.array([[0], [2], [1]]), (3, 3), lax.ScatterDimensionNumbers(
|
|
update_window_dims=(1,), inserted_window_dims=(0,),
|
|
scatter_dims_to_operand_dims=(0,)), 3),
|
|
]
|
|
for rng_idx_factory in [partial(jtu.rand_int, high=max_idx)]
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testScatterAddGrad(self, arg_shape, dtype, idxs, update_shape, dnums,
|
|
rng_factory, rng_idx_factory):
|
|
rng = rng_factory(self.rng())
|
|
rng_idx = rng_idx_factory(self.rng())
|
|
idxs = rng_idx(idxs.shape, idxs.dtype)
|
|
scatter_add = lambda x, y: lax.scatter_add(x, idxs, y,
|
|
dimension_numbers=dnums)
|
|
x = rng(arg_shape, dtype)
|
|
y = rng(update_shape, dtype)
|
|
check_grads(scatter_add, (x, y), 2, ["fwd", "rev"], 1e-2, 1e-2, 1.)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_idxs={}_update={}_dnums={}".format(
|
|
jtu.format_shape_dtype_string(arg_shape, dtype),
|
|
idxs, update_shape, dnums),
|
|
"arg_shape": arg_shape, "dtype": dtype, "idxs": idxs,
|
|
"update_shape": update_shape, "dnums": dnums, "rng_factory": rng_factory,
|
|
"rng_idx_factory": rng_idx_factory}
|
|
for dtype in grad_float_dtypes
|
|
for arg_shape, idxs, update_shape, dnums, max_idx in [
|
|
((5,), onp.array([[0], [2]]), (2,), lax.ScatterDimensionNumbers(
|
|
update_window_dims=(), inserted_window_dims=(0,),
|
|
scatter_dims_to_operand_dims=(0,)), 4),
|
|
((10,), onp.array([[0], [0], [0]]), (3, 2), lax.ScatterDimensionNumbers(
|
|
update_window_dims=(1,), inserted_window_dims=(),
|
|
scatter_dims_to_operand_dims=(0,)), 9),
|
|
((10, 5,), onp.array([[0], [2], [1]]), (3, 3), lax.ScatterDimensionNumbers(
|
|
update_window_dims=(1,), inserted_window_dims=(0,),
|
|
scatter_dims_to_operand_dims=(0,)), 3),
|
|
]
|
|
# Scatters with conflicting indices are not deterministic on GPU, so we
|
|
# use indices that do not collide.
|
|
for rng_idx_factory in [partial(jtu.rand_unique_int, high=max_idx)]
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testScatterGrad(self, arg_shape, dtype, idxs, update_shape, dnums,
|
|
rng_factory, rng_idx_factory):
|
|
rng = rng_factory(self.rng())
|
|
rng_idx = rng_idx_factory(self.rng())
|
|
idxs = rng_idx(idxs.shape, idxs.dtype)
|
|
scatter = lambda x, y: lax.scatter(x, idxs, y, dimension_numbers=dnums)
|
|
x = rng(arg_shape, dtype)
|
|
y = rng(update_shape, dtype)
|
|
check_grads(scatter, (x, y), 2, ["fwd", "rev"], 1e-2, 1e-2, 1.)
|
|
|
|
def testScatterGradSymbolicZeroUpdate(self):
|
|
# https://github.com/google/jax/issues/1901
|
|
def f(x):
|
|
n = x.shape[0]
|
|
y = onp.arange(n, dtype=x.dtype)
|
|
return jax.ops.index_update(x, onp.diag_indices(n), y)
|
|
rng = jtu.rand_default(self.rng())
|
|
check_grads(f, (rng((5, 5), onp.float32),), 2, ["fwd", "rev"], 1e-2, 1e-2,
|
|
1.)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_idxs={}_update={}_dnums={}".format(
|
|
jtu.format_shape_dtype_string(arg_shape, dtype),
|
|
idxs, update_shape, dnums),
|
|
"arg_shape": arg_shape, "dtype": dtype, "idxs": idxs,
|
|
"update_shape": update_shape, "dnums": dnums,
|
|
"rng_factory": rng_factory, "rng_idx_factory": rng_idx_factory}
|
|
for dtype in grad_float_dtypes
|
|
for arg_shape, idxs, update_shape, dnums in [
|
|
((5,), onp.array([[0], [2]]), (2,), lax.ScatterDimensionNumbers(
|
|
update_window_dims=(), inserted_window_dims=(0,),
|
|
scatter_dims_to_operand_dims=(0,))),
|
|
((10,), onp.array([[0], [0], [0]]), (3, 2), lax.ScatterDimensionNumbers(
|
|
update_window_dims=(1,), inserted_window_dims=(),
|
|
scatter_dims_to_operand_dims=(0,))),
|
|
((10, 5,), onp.array([[0], [2], [1]]), (3, 3), lax.ScatterDimensionNumbers(
|
|
update_window_dims=(1,), inserted_window_dims=(0,),
|
|
scatter_dims_to_operand_dims=(0,))),
|
|
]
|
|
for rng_idx_factory in [partial(jtu.rand_int, high=max(arg_shape))]
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testScatterMax(self, arg_shape, dtype, idxs, update_shape, dnums,
|
|
rng_factory, rng_idx_factory):
|
|
rng = rng_factory(self.rng())
|
|
rng_idx = rng_idx_factory(self.rng())
|
|
idxs = rng_idx(idxs.shape, idxs.dtype)
|
|
scatter_max = lambda x, y: lax.scatter_max(x, idxs, y, dnums)
|
|
x = rng(arg_shape, dtype)
|
|
y = rng(update_shape, dtype)
|
|
check_grads(scatter_max, (x, y), 2, ["fwd", "rev"], 1e-2, 1e-2)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_idxs={}_update={}_dnums={}".format(
|
|
jtu.format_shape_dtype_string(arg_shape, dtype),
|
|
idxs, update_shape, dnums),
|
|
"arg_shape": arg_shape, "dtype": dtype, "idxs": idxs,
|
|
"update_shape": update_shape, "dnums": dnums,
|
|
"rng_factory": rng_factory, "rng_idx_factory": rng_idx_factory}
|
|
for dtype in grad_float_dtypes
|
|
for arg_shape, idxs, update_shape, dnums in [
|
|
((5,), onp.array([[0], [2]]), (2,), lax.ScatterDimensionNumbers(
|
|
update_window_dims=(), inserted_window_dims=(0,),
|
|
scatter_dims_to_operand_dims=(0,))),
|
|
((10,), onp.array([[0], [0], [0]]), (3, 2), lax.ScatterDimensionNumbers(
|
|
update_window_dims=(1,), inserted_window_dims=(),
|
|
scatter_dims_to_operand_dims=(0,))),
|
|
((10, 5,), onp.array([[0], [2], [1]]), (3, 3), lax.ScatterDimensionNumbers(
|
|
update_window_dims=(1,), inserted_window_dims=(0,),
|
|
scatter_dims_to_operand_dims=(0,))),
|
|
]
|
|
for rng_idx_factory in [partial(jtu.rand_int, high=max(arg_shape))]
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testScatterMin(self, arg_shape, dtype, idxs, update_shape, dnums,
|
|
rng_factory, rng_idx_factory):
|
|
rng = rng_factory(self.rng())
|
|
rng_idx = rng_idx_factory(self.rng())
|
|
idxs = rng_idx(idxs.shape, idxs.dtype)
|
|
scatter_min = lambda x, y: lax.scatter_min(x, idxs, y, dnums)
|
|
x = rng(arg_shape, dtype)
|
|
y = rng(update_shape, dtype)
|
|
check_grads(scatter_min, (x, y), 2, ["fwd", "rev"], 1e-2, 1e-2)
|
|
|
|
def testStopGradient(self):
|
|
def f(x):
|
|
return lax.sin(x) * lax.cos(lax.stop_gradient(x))
|
|
|
|
def f2(x, y):
|
|
return lax.sin(x) * lax.cos(y)
|
|
|
|
x = 3.14
|
|
ans = api.grad(f)(x)
|
|
expected = api.grad(f2)(x, x)
|
|
self.assertAllClose(ans, expected)
|
|
|
|
ans = api.grad(api.grad(f))(x)
|
|
expected = api.grad(api.grad(f2))(x, x)
|
|
self.assertAllClose(ans, expected)
|
|
|
|
ans = api.grad(lambda x: lax.stop_gradient({'foo':x})['foo'])(3.)
|
|
expected = onp.array(0.0)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
with core.skipping_checks():
|
|
with self.assertRaises(TypeError):
|
|
lax.stop_gradient(lambda x: x)
|
|
|
|
# TODO(mattjj): make this a more systematic test
|
|
def testRemainder(self):
|
|
rng = onp.random.RandomState(0)
|
|
x = rng.uniform(-0.9, 9, size=(3, 4))
|
|
y = rng.uniform(0.7, 1.9, size=(3, 1))
|
|
assert not set(onp.unique(x)) & set(onp.unique(y))
|
|
tol = 1e-1 if num_float_bits(onp.float64) == 32 else 1e-3
|
|
check_grads(lax.rem, (x, y), 2, ["fwd", "rev"], tol, tol)
|
|
|
|
rng = onp.random.RandomState(0)
|
|
x = rng.uniform(-0.9, 9, size=(1, 4))
|
|
y = rng.uniform(0.7, 1.9, size=(3, 4))
|
|
assert not set(onp.unique(x)) & set(onp.unique(y))
|
|
tol = 1e-1 if num_float_bits(onp.float64) == 32 else 1e-3
|
|
check_grads(lax.rem, (x, y), 2, ["fwd", "rev"], tol, tol)
|
|
|
|
def testHigherOrderGradientOfReciprocal(self):
|
|
# Regression test for https://github.com/google/jax/issues/3136
|
|
def inv(x):
|
|
# N.B.: intentionally written as 1/x, not x ** -1 or reciprocal(x)
|
|
return 1 / x
|
|
grad_fn = jax.grad(jax.grad(jax.grad(jax.grad(jax.grad(jax.grad(inv))))))
|
|
self.assertAllClose(onp.float32(0.0439453125), grad_fn(onp.float32(4.)))
|
|
|
|
def all_bdims(*shapes):
|
|
bdims = (itertools.chain([cast(Optional[int], None)],
|
|
range(len(shape) + 1)) for shape in shapes)
|
|
return (t for t in itertools.product(*bdims) if not all(e is None for e in t))
|
|
|
|
def add_bdim(bdim_size, bdim, shape):
|
|
shape = list(shape)
|
|
if bdim is not None:
|
|
shape.insert(bdim, bdim_size)
|
|
return tuple(shape)
|
|
|
|
def slicer(x, bdim):
|
|
if bdim is None:
|
|
return lambda _: x
|
|
else:
|
|
return lambda i: lax.index_in_dim(x, i, bdim, keepdims=False)
|
|
|
|
def args_slicer(args, bdims):
|
|
slicers = list(map(slicer, args, bdims))
|
|
return lambda i: [sl(i) for sl in slicers]
|
|
|
|
class LaxVmapTest(jtu.JaxTestCase):
|
|
|
|
def _CheckBatching(self, op, bdim_size, bdims, shapes, dtypes, rng,
|
|
rtol=None, atol=None):
|
|
batched_shapes = list(jax.util.safe_map(partial(add_bdim, bdim_size),
|
|
bdims, shapes))
|
|
args = [rng(shape, dtype)
|
|
for shape, dtype in jax.util.safe_zip(batched_shapes, dtypes)]
|
|
args_slice = args_slicer(args, bdims)
|
|
ans = api.vmap(op, bdims)(*args)
|
|
expected = onp.stack([op(*args_slice(i)) for i in range(bdim_size)])
|
|
self.assertAllClose(ans, expected, rtol=rtol, atol=atol)
|
|
|
|
@parameterized.named_parameters(itertools.chain.from_iterable(
|
|
jtu.cases_from_list(
|
|
{"testcase_name": "{}_bdims={}".format(
|
|
jtu.format_test_name_suffix(rec.op, shapes,
|
|
itertools.repeat(dtype)), bdims),
|
|
"op_name": rec.op, "rng_factory": rec.rng_factory, "shapes": shapes,
|
|
"dtype": dtype, "bdims": bdims, "tol": rec.tol}
|
|
for shape_group in compatible_shapes
|
|
for shapes in CombosWithReplacement(shape_group, rec.nargs)
|
|
for bdims in all_bdims(*shapes)
|
|
for dtype in rec.dtypes)
|
|
for rec in LAX_OPS))
|
|
def testOp(self, op_name, rng_factory, shapes, dtype, bdims, tol):
|
|
rng = rng_factory(self.rng())
|
|
op = getattr(lax, op_name)
|
|
self._CheckBatching(op, 10, bdims, shapes, [dtype] * len(shapes), rng,
|
|
atol=tol, rtol=tol)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name":
|
|
"_lhs_shape={}_rhs_shape={}_strides={}_padding={}_lhs_dilation={}_"
|
|
"rhs_dilation={}_dims={}_feature_group_count={}_batch_group_count={}"
|
|
"_lhs_bdim={}_rhs_bdim={}"
|
|
.format(jtu.format_shape_dtype_string(lhs_shape, dtype),
|
|
jtu.format_shape_dtype_string(rhs_shape, dtype),
|
|
strides, padding, lhs_dil, rhs_dil, ",".join(dim_nums),
|
|
feature_group_count, batch_group_count, lhs_bdim, rhs_bdim),
|
|
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
|
|
"strides": strides, "padding": padding, "lhs_dil": lhs_dil,
|
|
"rhs_dil": rhs_dil, "rng_factory": rng_factory, "dimension_numbers": dim_nums,
|
|
"perms": perms, "lhs_bdim": lhs_bdim, "rhs_bdim": rhs_bdim,
|
|
"feature_group_count": feature_group_count,
|
|
"batch_group_count": batch_group_count,
|
|
}
|
|
for batch_group_count, feature_group_count in ([(1, 1), (2, 1), (1, 2)])
|
|
for lhs_shape, rhs_shape, all_strides, all_pads, lhs_dils, rhs_dils in [
|
|
((b * batch_group_count, i * feature_group_count, 6, 7), # lhs_shape
|
|
(j * batch_group_count * feature_group_count, i, 1, 2), # rhs_shape
|
|
[(1, 1), (1, 2), (2, 1)], # strides
|
|
[((0, 0), (0, 0)), ((1, 0), (0, 1)), ((0, -1), (0, 0))], # pads
|
|
[(1, 1), (2, 1)], # lhs_dils
|
|
[(1, 1), (2, 2)]) # rhs_dils
|
|
for b, i, j in itertools.product([1, 2], repeat=3)]
|
|
for strides in all_strides
|
|
for rhs_dil in rhs_dils
|
|
for lhs_dil in lhs_dils
|
|
for dtype in [onp.float32]
|
|
for padding in all_pads
|
|
for dim_nums, perms in [
|
|
(("NCHW", "OIHW", "NCHW"), ([0, 1, 2, 3], [0, 1, 2, 3])),
|
|
(("NHWC", "HWIO", "NHWC"), ([0, 2, 3, 1], [2, 3, 1, 0])),
|
|
(("NHWC", "OIHW", "NCHW"), ([0, 2, 3, 1], [0, 1, 2, 3]))]
|
|
for lhs_bdim in itertools.chain([cast(Optional[int], None)],
|
|
range(len(lhs_shape) + 1))
|
|
for rhs_bdim in itertools.chain([cast(Optional[int], None)],
|
|
range(len(rhs_shape) + 1))
|
|
if (lhs_bdim, rhs_bdim) != (None, None)
|
|
for rng_factory in [jtu.rand_default]
|
|
))
|
|
def testConvGeneralDilatedBatching(
|
|
self, lhs_shape, rhs_shape, dtype, strides, padding, lhs_dil, rhs_dil,
|
|
dimension_numbers, perms, feature_group_count, batch_group_count,
|
|
lhs_bdim, rhs_bdim, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
tol = 1e-1 if dtypes.finfo(dtype).bits <= 32 else 1e-3
|
|
|
|
# permute shapes to match dim_spec, scale by feature_group_count
|
|
lhs_perm, rhs_perm = perms
|
|
lhs_shape = list(onp.take(lhs_shape, lhs_perm))
|
|
rhs_shape = list(onp.take(rhs_shape, rhs_perm))
|
|
|
|
conv = partial(lax.conv_general_dilated, window_strides=strides,
|
|
padding=padding, lhs_dilation=lhs_dil, rhs_dilation=rhs_dil,
|
|
dimension_numbers=dimension_numbers,
|
|
feature_group_count=feature_group_count,
|
|
batch_group_count=batch_group_count,
|
|
precision=lax.Precision.HIGHEST)
|
|
self._CheckBatching(conv, 5, (lhs_bdim, rhs_bdim), (lhs_shape, rhs_shape),
|
|
(dtype, dtype), rng, rtol=tol, atol=tol)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_from_dtype={}_to_dtype={}_bdims={}".format(
|
|
shape, from_dtype, to_dtype, bdims),
|
|
"shape": shape, "from_dtype": from_dtype, "to_dtype": to_dtype,
|
|
"bdims": bdims, "rng_factory": rng_factory}
|
|
for from_dtype, to_dtype in itertools.product(
|
|
[onp.float32, onp.int32, "float32", "int32"], repeat=2)
|
|
for shape in [(2, 3)]
|
|
for bdims in all_bdims(shape)
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testConvertElementType(self, shape, from_dtype, to_dtype, bdims, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
op = lambda x: lax.convert_element_type(x, to_dtype)
|
|
self._CheckBatching(op, 10, bdims, (shape,), (from_dtype,), rng)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_from_dtype={}_to_dtype={}_bdims={}".format(
|
|
shape, from_dtype, to_dtype, bdims),
|
|
"shape": shape, "from_dtype": from_dtype, "to_dtype": to_dtype,
|
|
"bdims": bdims, "rng_factory": rng_factory}
|
|
for from_dtype, to_dtype in itertools.product(
|
|
[onp.float32, onp.int32, "float32", "int32"], repeat=2)
|
|
for shape in [(2, 3)]
|
|
for bdims in all_bdims(shape)
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testBitcastElementType(self, shape, from_dtype, to_dtype, bdims, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
op = lambda x: lax.bitcast_convert_type(x, to_dtype)
|
|
self._CheckBatching(op, 10, bdims, (shape,), (from_dtype,), rng)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_min_shape={}_operand_shape={}_max_shape={}_bdims={}"
|
|
.format(jtu.format_shape_dtype_string(min_shape, dtype),
|
|
jtu.format_shape_dtype_string(operand_shape, dtype),
|
|
jtu.format_shape_dtype_string(max_shape, dtype),
|
|
bdims),
|
|
"min_shape": min_shape, "operand_shape": operand_shape,
|
|
"max_shape": max_shape, "dtype": dtype, "bdims": bdims, "rng_factory": rng_factory}
|
|
for min_shape, operand_shape, max_shape in [
|
|
[(), (2, 3), ()],
|
|
[(2, 3), (2, 3), ()],
|
|
[(), (2, 3), (2, 3)],
|
|
[(2, 3), (2, 3), (2, 3)],
|
|
]
|
|
for dtype in default_dtypes
|
|
for bdims in all_bdims(min_shape, operand_shape, max_shape)
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testClamp(self, min_shape, operand_shape, max_shape, dtype, bdims, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
raise SkipTest("batching rule for clamp not implemented") # TODO(mattj)
|
|
shapes = [min_shape, operand_shape, max_shape]
|
|
self._CheckBatching(lax.clamp, 10, bdims, shapes, [dtype] * 3, rng)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_lhs_shape={}_rhs_shape={}_bdims={}".format(
|
|
jtu.format_shape_dtype_string(lhs_shape, dtype),
|
|
jtu.format_shape_dtype_string(rhs_shape, dtype),
|
|
bdims),
|
|
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
|
|
"bdims": bdims, "rng_factory": rng_factory}
|
|
for lhs_shape in [(3,), (4, 3)] for rhs_shape in [(3,), (3, 6)]
|
|
for bdims in all_bdims(lhs_shape, rhs_shape)
|
|
for dtype in default_dtypes
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testDot(self, lhs_shape, rhs_shape, dtype, bdims, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
op = partial(lax.dot, precision=lax.Precision.HIGHEST)
|
|
self._CheckBatching(op, 5, bdims, (lhs_shape, rhs_shape), (dtype, dtype),
|
|
rng, rtol={onp.float16: 5e-2, onp.float64: 5e-14})
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name":
|
|
"_lhs_shape={}_rhs_shape={}_lhs_contracting={}_rhs_contracting={}_bdims={}"
|
|
.format(jtu.format_shape_dtype_string(lhs_shape, dtype),
|
|
jtu.format_shape_dtype_string(rhs_shape, dtype),
|
|
lhs_contracting, rhs_contracting, bdims),
|
|
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
|
|
"lhs_contracting": lhs_contracting, "rhs_contracting": rhs_contracting,
|
|
"bdims": bdims, "rng_factory": rng_factory}
|
|
for lhs_shape, rhs_shape, lhs_contracting, rhs_contracting in [
|
|
[(3, 5), (2, 5), [1], [1]],
|
|
[(5, 3), (5, 2), [0], [0]],
|
|
[(5, 3, 2), (5, 2, 4), [0], [0]],
|
|
[(5, 3, 2), (5, 2, 4), [0,2], [0,1]],
|
|
[(1, 2, 2, 3), (1, 2, 3, 1), [1], [1]],
|
|
[(3, 2), (2, 4), [1], [0]],
|
|
]
|
|
for bdims in all_bdims(lhs_shape, rhs_shape)
|
|
for dtype in default_dtypes
|
|
for rng_factory in [jtu.rand_small]))
|
|
def testDotGeneralContractOnly(self, lhs_shape, rhs_shape, dtype,
|
|
lhs_contracting, rhs_contracting, bdims, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
dimension_numbers = ((lhs_contracting, rhs_contracting), ([], []))
|
|
dot = partial(lax.dot_general, dimension_numbers=dimension_numbers)
|
|
self._CheckBatching(dot, 5, bdims, (lhs_shape, rhs_shape), (dtype, dtype),
|
|
rng)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name":
|
|
"_lhs_shape={}_rhs_shape={}_dimension_numbers={}_bdims={}"
|
|
.format(jtu.format_shape_dtype_string(lhs_shape, dtype),
|
|
jtu.format_shape_dtype_string(rhs_shape, dtype),
|
|
dimension_numbers, bdims),
|
|
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
|
|
"dimension_numbers": dimension_numbers, "bdims": bdims, "rng_factory": rng_factory}
|
|
for lhs_shape, rhs_shape, dimension_numbers in [
|
|
((3, 3, 2), (3, 2, 4), (([2], [1]), ([0], [0]))),
|
|
((3, 4, 2, 4), (3, 4, 3, 2), (([2], [3]), ([0, 1], [0, 1]))),
|
|
]
|
|
for bdims in all_bdims(lhs_shape, rhs_shape)
|
|
for dtype in default_dtypes
|
|
for rng_factory in [jtu.rand_small]))
|
|
def testDotGeneralContractAndBatch(self, lhs_shape, rhs_shape, dtype,
|
|
dimension_numbers, bdims, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
dot = partial(lax.dot_general, dimension_numbers=dimension_numbers)
|
|
self._CheckBatching(dot, 5, bdims, (lhs_shape, rhs_shape), (dtype, dtype),
|
|
rng)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_dtype={}_broadcast_sizes={}_bdims={}".format(
|
|
shape, onp.dtype(dtype).name, broadcast_sizes, bdims),
|
|
"shape": shape, "dtype": dtype, "broadcast_sizes": broadcast_sizes,
|
|
"bdims": bdims, "rng_factory": rng_factory}
|
|
for shape in [(), (2, 3)]
|
|
for dtype in default_dtypes
|
|
for broadcast_sizes in [(), (2,), (1, 2)]
|
|
for bdims in all_bdims(shape)
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testBroadcast(self, shape, dtype, broadcast_sizes, bdims, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
op = lambda x: lax.broadcast(x, broadcast_sizes)
|
|
self._CheckBatching(op, 5, bdims, (shape,), (dtype,), rng)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_inshape={}_outshape={}_bcdims={}_bdims={}".format(
|
|
jtu.format_shape_dtype_string(inshape, dtype),
|
|
outshape, broadcast_dimensions, bdims),
|
|
"inshape": inshape, "dtype": dtype, "outshape": outshape,
|
|
"dimensions": broadcast_dimensions, "bdims": bdims,
|
|
"rng_factory": rng_factory}
|
|
for inshape, outshape, broadcast_dimensions in [
|
|
([2], [2, 2], [0]),
|
|
([2], [2, 2], [1]),
|
|
([2], [2, 3], [0]),
|
|
([], [2, 3], []),
|
|
]
|
|
for dtype in default_dtypes
|
|
for bdims in all_bdims(inshape)
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testBroadcastInDim(self, inshape, dtype, outshape, dimensions, bdims, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
raise SkipTest("this test has failures in some cases") # TODO(mattjj)
|
|
op = lambda x: lax.broadcast_in_dim(x, outshape, dimensions)
|
|
self._CheckBatching(op, 5, bdims, (inshape,), (dtype,), rng)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_inshape={}_dimensions={}_bdims={}".format(
|
|
jtu.format_shape_dtype_string(arg_shape, onp.float32),
|
|
dimensions, bdims),
|
|
"arg_shape": arg_shape, "dimensions": dimensions, "bdims": bdims,
|
|
"rng_factory": rng_factory}
|
|
for arg_shape, dimensions in [
|
|
[(1,), (0,)],
|
|
[(1,), (-1,)],
|
|
[(2, 1, 4), (1,)],
|
|
[(2, 1, 4), (-2,)],
|
|
[(2, 1, 3, 1), (1,)],
|
|
[(2, 1, 3, 1), (1, 3)],
|
|
[(2, 1, 3, 1), (3,)],
|
|
[(2, 1, 3, 1), (1, -1)],
|
|
]
|
|
for bdims in all_bdims(arg_shape)
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testSqueeze(self, arg_shape, dimensions, bdims, rng_factory):
|
|
dtype = onp.float32
|
|
rng = rng_factory(self.rng())
|
|
op = lambda x: lax.squeeze(x, dimensions)
|
|
self._CheckBatching(op, 10, bdims, (arg_shape,), (dtype,), rng)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_inshape={}_outshape={}_dims={}_bdims={}".format(
|
|
jtu.format_shape_dtype_string(arg_shape, dtype),
|
|
jtu.format_shape_dtype_string(out_shape, dtype),
|
|
dimensions, bdims),
|
|
"arg_shape": arg_shape, "out_shape": out_shape, "dtype": dtype,
|
|
"dimensions": dimensions, "bdims": bdims, "rng_factory": rng_factory}
|
|
for dtype in default_dtypes
|
|
for arg_shape, dimensions, out_shape in [
|
|
[(3, 4), None, (12,)],
|
|
[(2, 1, 4), None, (8,)],
|
|
[(2, 2, 4), None, (2, 8)],
|
|
[(2, 2, 4), (0, 1, 2), (2, 8)],
|
|
[(2, 2, 4), (1, 0, 2), (8, 2)],
|
|
[(2, 2, 4), (2, 1, 0), (4, 2, 2)]
|
|
]
|
|
for bdims in all_bdims(arg_shape)
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testReshape(self, arg_shape, out_shape, dtype, dimensions, bdims, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
op = lambda x: lax.reshape(x, out_shape, dimensions=dimensions)
|
|
self._CheckBatching(op, 10, bdims, (arg_shape,), (dtype,), rng)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_inshape={}_pads={}_bdims={}"
|
|
.format(jtu.format_shape_dtype_string(shape, dtype), pads, bdims),
|
|
"shape": shape, "dtype": dtype, "pads": pads,
|
|
"rng_factory": jtu.rand_small, "bdims": bdims}
|
|
for shape in [(2, 3)]
|
|
for bdims in all_bdims(shape)
|
|
for dtype in default_dtypes
|
|
for pads in [[(1, 2, 1), (0, 1, 0)]]))
|
|
def testPad(self, shape, dtype, pads, bdims, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
fun = lambda operand: lax.pad(operand, onp.array(0, dtype), pads)
|
|
self._CheckBatching(fun, 5, bdims, (shape,), (dtype,), rng)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_predshape={}_argshapes={}_bdims={}".format(
|
|
jtu.format_shape_dtype_string(pred_shape, onp.bool_),
|
|
jtu.format_shape_dtype_string(arg_shape, arg_dtype),
|
|
bdims),
|
|
"pred_shape": pred_shape, "arg_shape": arg_shape, "arg_dtype": arg_dtype,
|
|
"bdims": bdims, "rng_factory": rng_factory}
|
|
for arg_shape in [(), (3,), (2, 3)]
|
|
for pred_shape in ([(), arg_shape] if arg_shape else [()])
|
|
for bdims in all_bdims(pred_shape, arg_shape, arg_shape)
|
|
for arg_dtype in default_dtypes
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testSelect(self, pred_shape, arg_shape, arg_dtype, bdims, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
op = lambda c, x, y: lax.select(c < 0, x, y)
|
|
self._CheckBatching(op, 5, bdims, (pred_shape, arg_shape, arg_shape,),
|
|
(onp.bool_, arg_dtype, arg_dtype), rng)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name":
|
|
"_shape={}_start_indices={}_limit_indices={}_strides={}_bdims={}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype),
|
|
start_indices, limit_indices, strides, bdims),
|
|
"shape": shape, "dtype": dtype, "starts": start_indices,
|
|
"limits": limit_indices, "strides": strides, "bdims": bdims, "rng_factory": rng_factory}
|
|
for shape, start_indices, limit_indices, strides in [
|
|
[(3,), (1,), (2,), None],
|
|
[(7,), (4,), (7,), None],
|
|
[(5,), (1,), (5,), (2,)],
|
|
[(8,), (1,), (6,), (2,)],
|
|
[(5, 3), (1, 1), (3, 2), None],
|
|
[(5, 3), (1, 1), (3, 1), None],
|
|
[(7, 5, 3), (4, 0, 1), (7, 1, 3), None],
|
|
[(5, 3), (1, 1), (2, 1), (1, 1)],
|
|
[(5, 3), (1, 1), (5, 3), (2, 1)],
|
|
]
|
|
for bdims in all_bdims(shape)
|
|
for dtype in default_dtypes
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testSlice(self, shape, dtype, starts, limits, strides, bdims, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
op = lambda x: lax.slice(x, starts, limits, strides)
|
|
self._CheckBatching(op, 5, bdims, (shape,), (dtype,), rng)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_perm={}_bdims={}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype), perm, bdims),
|
|
"shape": shape, "dtype": dtype, "perm": perm, "bdims": bdims, "rng_factory": rng_factory}
|
|
for shape, perm in [
|
|
[(3, 4), (1, 0)],
|
|
[(3, 4), (0, 1)],
|
|
[(3, 4, 5), (2, 1, 0)],
|
|
[(3, 4, 5), (1, 0, 2)],
|
|
]
|
|
for bdims in all_bdims(shape)
|
|
for dtype in default_dtypes
|
|
for rng_factory in [jtu.rand_default]))
|
|
def testTranspose(self, shape, dtype, perm, bdims, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
op = lambda x: lax.transpose(x, perm)
|
|
self._CheckBatching(op, 5, bdims, (shape,), (dtype,), rng)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_op={}_inshape={}_reducedims={}_initval={}_bdims={}"
|
|
.format(op.__name__, jtu.format_shape_dtype_string(shape, dtype), dims,
|
|
init_val, bdims),
|
|
"op": op, "init_val": init_val, "shape": shape, "dtype": dtype,
|
|
"dims": dims, "bdims": bdims, "rng_factory": rng_factory}
|
|
for init_val, op, dtypes in [
|
|
(0, lax.add, default_dtypes),
|
|
(1, lax.mul, default_dtypes),
|
|
(0, lax.max, all_dtypes), # non-monoidal
|
|
(-onp.inf, lax.max, float_dtypes),
|
|
(dtypes.iinfo(onp.int32).min, lax.max, [onp.int32]),
|
|
(dtypes.iinfo(onp.int64).min, lax.max, [onp.int64]),
|
|
(dtypes.iinfo(onp.uint32).min, lax.max, [onp.uint32]),
|
|
(dtypes.iinfo(onp.uint64).min, lax.max, [onp.uint64]),
|
|
(onp.inf, lax.min, float_dtypes),
|
|
(dtypes.iinfo(onp.int32).max, lax.min, [onp.int32]),
|
|
(dtypes.iinfo(onp.int64).max, lax.min, [onp.int64]),
|
|
(dtypes.iinfo(onp.uint32).max, lax.min, [onp.uint32]),
|
|
(dtypes.iinfo(onp.uint64).max, lax.min, [onp.uint64]),
|
|
]
|
|
for dtype in dtypes
|
|
for shape, dims in [
|
|
[(3, 4, 5), (0,)], [(3, 4, 5), (1, 2)],
|
|
[(3, 4, 5), (0, 2)], [(3, 4, 5), (0, 1, 2)]
|
|
]
|
|
for bdims in all_bdims(shape)
|
|
for rng_factory in [jtu.rand_small]))
|
|
def testReduce(self, op, init_val, shape, dtype, dims, bdims, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
init_val = onp.asarray(init_val, dtype=dtype)
|
|
fun = lambda operand: lax.reduce(operand, init_val, op, dims)
|
|
self._CheckBatching(fun, 5, bdims, (shape,), (dtype,), rng)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_op={}_dtype={}_padding={}"
|
|
.format(op.__name__, onp.dtype(dtype).name, padding),
|
|
"op": op, "init_val": init_val, "dtype": dtype, "padding": padding,
|
|
"rng_factory": rng_factory}
|
|
for init_val, op, dtypes in [
|
|
(0, lax.add, [onp.float32]),
|
|
(-onp.inf, lax.max, [onp.float32]),
|
|
(onp.inf, lax.min, [onp.float32]),
|
|
]
|
|
for dtype in dtypes
|
|
for padding in ["VALID", "SAME"]
|
|
for rng_factory in [jtu.rand_small]))
|
|
def testReduceWindow(self, op, init_val, dtype, padding, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
init_val = onp.asarray(init_val, dtype=dtype)
|
|
|
|
all_configs = itertools.chain(
|
|
itertools.product(
|
|
[(4, 6)],
|
|
[(2, 1), (1, 2)],
|
|
[(1, 1), (2, 1), (1, 2)]),
|
|
itertools.product(
|
|
[(3, 2, 4, 6)], [(1, 1, 2, 1), (2, 1, 2, 1)],
|
|
[(1, 2, 2, 1), (1, 1, 1, 1)]))
|
|
|
|
def fun(operand):
|
|
return lax.reduce_window(operand, init_val, op, dims, strides, padding)
|
|
|
|
for shape, dims, strides in all_configs:
|
|
for bdims in all_bdims(shape):
|
|
self._CheckBatching(fun, 3, bdims, (shape,), (dtype,), rng)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_op={}_shape={}_axis={}_bdims={}"
|
|
.format(op.__name__, jtu.format_shape_dtype_string(shape, dtype), axis,
|
|
bdims),
|
|
"op": op, "shape": shape, "dtype": dtype, "bdims": bdims,
|
|
"axis": axis, "rng_factory": rng_factory}
|
|
for op, types in [
|
|
(lax.cumsum, [onp.float32, onp.float64]),
|
|
(lax.cumprod, [onp.float32, onp.float64]),
|
|
]
|
|
for dtype in types
|
|
for shape in [[10], [3, 4, 5]]
|
|
for axis in range(len(shape))
|
|
for bdims in all_bdims(shape)
|
|
for rng_factory in [
|
|
jtu.rand_default if dtypes.issubdtype(dtype, onp.integer)
|
|
else jtu.rand_small]))
|
|
def testCumulativeReduce(self, op, shape, dtype, axis, bdims, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
self._CheckBatching(partial(op, axis=axis), 7, bdims, (shape,), (dtype,),
|
|
rng)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_dtype={}_padding={}".format(onp.dtype(dtype).name,
|
|
padding),
|
|
"dtype": dtype, "padding": padding, "rng_factory": rng_factory}
|
|
for dtype in float_dtypes
|
|
for padding in ["VALID", "SAME"]
|
|
for rng_factory in [jtu.rand_small]))
|
|
@jtu.skip_on_flag("jax_skip_slow_tests", True)
|
|
@jtu.ignore_warning(message="Using reduced precision for gradient.*")
|
|
def testSelectAndGatherAdd(self, dtype, padding, rng_factory):
|
|
if jtu.device_under_test() == "tpu" and dtype == dtypes.bfloat16:
|
|
raise SkipTest("bfloat16 _select_and_gather_add doesn't work on tpu")
|
|
rng = rng_factory(self.rng())
|
|
all_configs = itertools.chain(
|
|
itertools.product(
|
|
[(4, 6)],
|
|
[(2, 1), (1, 2)],
|
|
[(1, 1), (2, 1), (1, 2)]),
|
|
itertools.product(
|
|
[(3, 2, 4, 6)], [(1, 1, 2, 1), (2, 1, 2, 1)],
|
|
[(1, 2, 2, 1), (1, 1, 1, 1)]))
|
|
|
|
def fun(operand, tangents):
|
|
return lax._select_and_gather_add(operand, tangents, lax.ge_p, dims,
|
|
strides, padding)
|
|
|
|
for shape, dims, strides in all_configs:
|
|
for bdims in all_bdims(shape, shape):
|
|
self._CheckBatching(fun, 3, bdims, (shape, shape), (dtype, dtype), rng)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_bdims={}_fft_ndims={}"
|
|
.format(shape, bdims, fft_ndims),
|
|
"shape": shape, "bdims": bdims, "fft_ndims": fft_ndims, "rng_factory": rng_factory}
|
|
for shape in [(5,), (3, 4, 5), (2, 3, 4, 5)]
|
|
for bdims in all_bdims(shape)
|
|
for fft_ndims in range(0, min(3, len(shape)) + 1)
|
|
for rng_factory in [jtu.rand_default]))
|
|
@jtu.skip_on_devices("tpu") # TODO(b/137993701): unimplemented cases.
|
|
def testFft(self, fft_ndims, shape, bdims, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
ndims = len(shape)
|
|
axes = range(ndims - fft_ndims, ndims)
|
|
fft_lengths = [shape[axis] for axis in axes]
|
|
op = lambda x: lax.fft(x, xla_client.FftType.FFT, fft_lengths)
|
|
self._CheckBatching(op, 5, bdims, [shape], [onp.complex64], rng)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_idxs={}_dnums={}_slice_sizes={}_bdims={}"
|
|
.format(jtu.format_shape_dtype_string(shape, dtype), idxs, dnums,
|
|
slice_sizes, bdims),
|
|
"shape": shape, "dtype": dtype, "idxs": idxs, "dnums": dnums,
|
|
"slice_sizes": slice_sizes, "bdims": bdims}
|
|
for dtype in all_dtypes
|
|
for shape, idxs, dnums, slice_sizes in [
|
|
((5,), onp.array([[0], [2]]), lax.GatherDimensionNumbers(
|
|
offset_dims=(), collapsed_slice_dims=(0,), start_index_map=(0,)),
|
|
(1,)),
|
|
((10,), onp.array([[0], [0], [0]]), lax.GatherDimensionNumbers(
|
|
offset_dims=(1,), collapsed_slice_dims=(), start_index_map=(0,)),
|
|
(2,)),
|
|
((10, 5,), onp.array([[0], [2], [1]]), lax.GatherDimensionNumbers(
|
|
offset_dims=(1,), collapsed_slice_dims=(0,), start_index_map=(0,)),
|
|
(1, 3)),
|
|
((10, 5), onp.array([[0, 2], [1, 0]]), lax.GatherDimensionNumbers(
|
|
offset_dims=(1,), collapsed_slice_dims=(0,), start_index_map=(0, 1)),
|
|
(1, 3)),
|
|
]
|
|
for bdims in all_bdims(shape, idxs.shape)))
|
|
def testGather(self, shape, dtype, idxs, dnums, slice_sizes, bdims):
|
|
fun = partial(lax.gather, dimension_numbers=dnums, slice_sizes=slice_sizes)
|
|
self._CheckBatching(fun, 5, bdims, [shape, idxs.shape], [dtype, idxs.dtype],
|
|
jtu.rand_default(self.rng()))
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_idxs={}_update={}_dnums={}_bdims={}".format(
|
|
jtu.format_shape_dtype_string(arg_shape, dtype),
|
|
idxs, update_shape, dnums, bdims),
|
|
"arg_shape": arg_shape, "dtype": dtype, "idxs": idxs,
|
|
"update_shape": update_shape, "dnums": dnums, "bdims": bdims}
|
|
for dtype in float_dtypes
|
|
for arg_shape, idxs, update_shape, dnums in [
|
|
((5,), onp.array([[0], [2]]), (2,), lax.ScatterDimensionNumbers(
|
|
update_window_dims=(), inserted_window_dims=(0,),
|
|
scatter_dims_to_operand_dims=(0,))),
|
|
((10,), onp.array([[0], [0], [0]]), (3, 2), lax.ScatterDimensionNumbers(
|
|
update_window_dims=(1,), inserted_window_dims=(),
|
|
scatter_dims_to_operand_dims=(0,))),
|
|
((10, 5,), onp.array([[0], [2], [1]]), (3, 3), lax.ScatterDimensionNumbers(
|
|
update_window_dims=(1,), inserted_window_dims=(0,),
|
|
scatter_dims_to_operand_dims=(0,))),
|
|
]
|
|
for bdims in all_bdims(arg_shape, idxs.shape, update_shape)))
|
|
def testScatterAdd(self, arg_shape, dtype, idxs, update_shape, dnums, bdims):
|
|
fun = partial(lax.scatter_add, dimension_numbers=dnums)
|
|
self._CheckBatching(fun, 5, bdims, [arg_shape, idxs.shape, update_shape],
|
|
[dtype, idxs.dtype, dtype], jtu.rand_default(self.rng()),
|
|
rtol={onp.float16: 5e-3})
|
|
|
|
def testShapeUsesBuiltinInt(self):
|
|
x = lax.iota(onp.int32, 3) + 1
|
|
self.assertIsInstance(x.shape[0], int) # not np.int64
|
|
|
|
def testBroadcastShapesReturnsPythonInts(self):
|
|
shape1, shape2 = (1, 2, 3), (2, 3)
|
|
out_shape = lax.broadcast_shapes(shape1, shape2)
|
|
self.assertTrue(all(type(s) is int for s in out_shape))
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_k={}_bdims={}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype), k, bdims),
|
|
"shape": shape, "dtype": dtype, "k": k, "bdims": bdims, "rng_factory": rng_factory}
|
|
for shape in [(4,), (3, 5, 3)]
|
|
for k in [1, 3]
|
|
for bdims in all_bdims(shape)
|
|
# TODO(b/155170120): test with repeats once the XLA:CPU stable top_k bug is fixed:
|
|
# The top_k indices for integer arrays with identical entries won't match between
|
|
# vmap'd version and manual reference, so only test unique integer arrays for int_dtypes.
|
|
# Note also that we chose 3 * 5 * 3 * 5 such that it fits in the range of
|
|
# values a bfloat16 can represent exactly to avoid ties.
|
|
for dtype, rng_factory in itertools.chain(
|
|
zip(float_dtypes + int_dtypes, itertools.repeat(jtu.rand_unique_int)))))
|
|
def testTopK(self, shape, dtype, k, bdims, rng_factory):
|
|
rng = rng_factory(self.rng())
|
|
# _CheckBatching doesn't work with tuple outputs, so test outputs separately.
|
|
op1 = lambda x: lax.top_k(x, k=k)[0]
|
|
self._CheckBatching(op1, 5, bdims, (shape,), (dtype,), rng)
|
|
op2 = lambda x: lax.top_k(x, k=k)[1]
|
|
self._CheckBatching(op2, 5, bdims, (shape,), (dtype,), rng)
|
|
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}_dimension={}_arity={}_bdims={}"
|
|
.format(jtu.format_shape_dtype_string(shape, onp.float32), dimension,
|
|
arity, bdims),
|
|
"shape": shape, "dimension": dimension, "arity": arity, "bdims": bdims}
|
|
for shape in [(2, 3)]
|
|
for dimension in [0, 1]
|
|
for arity in range(3)
|
|
for bdims in all_bdims(*((shape,) * arity))))
|
|
def testSort(self, shape, dimension, arity, bdims):
|
|
rng = jtu.rand_default(self.rng())
|
|
if arity == 1:
|
|
fun = partial(lax.sort, dimension=dimension)
|
|
self._CheckBatching(fun, 5, bdims, (shape,) * arity, (onp.float32,) * arity,
|
|
rng)
|
|
else:
|
|
for i in range(arity):
|
|
fun = lambda *args, i=i: lax.sort(args, dimension=dimension)[i]
|
|
self._CheckBatching(fun, 5, bdims, (shape,) * arity,
|
|
(onp.float32,) * arity, rng)
|
|
|
|
|
|
# TODO Concatenate
|
|
# TODO Reverse
|
|
# TODO DynamicSlice
|
|
# TODO DynamicUpdateSlice
|
|
# TODO Collapse
|
|
# TODO Scatter
|
|
|
|
|
|
if __name__ == '__main__':
|
|
absltest.main()
|