mirror of
https://github.com/ROCm/jax.git
synced 2025-04-17 04:16:07 +00:00

* Make check_dtypes, atol, and rtol keyword-only arguments in jax.test_util APIs. Default to check_dtypes=True. Remove explicit usages of check_dtypes=True from tests. This mostly just removes visual noise from tests. Testing for exact type equality is the sensible default, although there are cases where opting out makes sense. No functional changes intended. * Fix a number of lax reference implementations to preserve types.
1502 lines
53 KiB
Python
1502 lines
53 KiB
Python
# Copyright 2018 Google LLC
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from functools import partial
|
|
import os
|
|
from random import shuffle
|
|
from unittest import SkipTest
|
|
|
|
import numpy as np
|
|
from absl.testing import absltest
|
|
from absl.testing import parameterized
|
|
|
|
import jax
|
|
import jax.numpy as jnp
|
|
from jax import test_util as jtu
|
|
from jax import tree_util
|
|
from jax import lax
|
|
from jax import random
|
|
from jax.abstract_arrays import ShapedArray
|
|
from jax.api import (pmap, soft_pmap, jit, vmap, jvp, grad, make_jaxpr,
|
|
linearize, device_put)
|
|
from jax.lib import xla_bridge
|
|
from jax.util import prod
|
|
from jax.interpreters import pxla
|
|
from jax.interpreters import xla
|
|
|
|
from jax.config import config
|
|
config.parse_flags_with_absl()
|
|
|
|
prev_xla_flags = None
|
|
|
|
# Run all tests with 8 CPU devices.
|
|
def setUpModule():
|
|
global prev_xla_flags
|
|
prev_xla_flags = os.getenv("XLA_FLAGS")
|
|
flags_str = prev_xla_flags or ""
|
|
# Don't override user-specified device count, or other XLA flags.
|
|
if "xla_force_host_platform_device_count" not in flags_str:
|
|
os.environ["XLA_FLAGS"] = (flags_str +
|
|
" --xla_force_host_platform_device_count=8")
|
|
# Clear any cached backends so new CPU backend will pick up the env var.
|
|
xla_bridge.get_backend.cache_clear()
|
|
|
|
# Reset to previous configuration in case other test modules will be run.
|
|
def tearDownModule():
|
|
if prev_xla_flags is None:
|
|
del os.environ["XLA_FLAGS"]
|
|
else:
|
|
os.environ["XLA_FLAGS"] = prev_xla_flags
|
|
xla_bridge.get_backend.cache_clear()
|
|
|
|
ignore_soft_pmap_warning = partial(
|
|
jtu.ignore_warning, message="soft_pmap is an experimental.*")
|
|
|
|
|
|
class PmapTest(jtu.JaxTestCase):
|
|
def _getMeshShape(self, device_mesh_shape):
|
|
device_count = xla_bridge.device_count()
|
|
if any(size == -1 for size in device_mesh_shape):
|
|
try:
|
|
return np.arange(device_count).reshape(device_mesh_shape).shape
|
|
except ValueError as err:
|
|
msg = "device mesh shape {} not compatible with device count {}"
|
|
raise SkipTest(msg.format(device_mesh_shape, device_count)) from err
|
|
else:
|
|
if device_count % prod(device_mesh_shape):
|
|
msg = "device mesh size {} does not divide available device count {}"
|
|
raise SkipTest(msg.format(prod(device_mesh_shape), device_count))
|
|
else:
|
|
return device_mesh_shape
|
|
|
|
def testBasic(self):
|
|
f = pmap(lambda x: x - lax.psum(x, 'i'), axis_name='i')
|
|
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
expected = x - np.sum(x, 0)
|
|
|
|
ans = f(x)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testMean(self):
|
|
f = pmap(lambda x: x - lax.pmean(x, 'i'), axis_name='i')
|
|
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
expected = x - np.broadcast_to(np.mean(x, 0), x.shape)
|
|
|
|
ans = f(x)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testGather(self):
|
|
f = pmap(lambda x: lax.all_gather(x, 'i'), axis_name='i')
|
|
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
expected = np.array([x] * xla_bridge.device_count())
|
|
ans = f(x)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testTrees(self):
|
|
ptranspose = lambda x, axis_name: lax.all_to_all(x, axis_name, 0, 0)
|
|
def protate(x, axis_name):
|
|
n = lax.psum(1, axis_name)
|
|
return lax.ppermute(x, axis_name, [(i, (i + 1) % n) for i in range(n)])
|
|
|
|
tree_f = lambda f: partial(tree_util.tree_map, f)
|
|
jax_f = lambda p: pmap(lambda x: p(x, 'i'), 'i')
|
|
np_f = lambda p: tree_f(lambda x: np.broadcast_to(p(x, 0), x.shape))
|
|
np_transpose = tree_f(np.transpose)
|
|
np_rotate = tree_f(lambda x: np.concatenate([x[-1:], x[:-1]]))
|
|
|
|
n = xla_bridge.device_count()
|
|
x = {'a': np.arange(1 * n * n, 2 * n * n).reshape([n, n]),
|
|
'b': np.arange(2 * n * n, 3 * n * n).reshape([n, n]),
|
|
'c': np.arange(4 * n * n, 5 * n * n).reshape([n, n])}
|
|
|
|
assert_allclose = partial(tree_util.tree_multimap,
|
|
partial(self.assertAllClose, check_dtypes=False))
|
|
assert_allclose(jax_f(lax.pmax)(x), np_f(np.max)(x))
|
|
assert_allclose(jax_f(lax.pmin)(x), np_f(np.min)(x))
|
|
assert_allclose(jax_f(lax.psum)(x), np_f(np.sum)(x))
|
|
assert_allclose(jax_f(lax.pmean)(x), np_f(np.mean)(x))
|
|
if jtu.device_under_test() not in ("cpu", "gpu"):
|
|
# NOTE: all-to-all and ppermute only supported on TPU.
|
|
assert_allclose(jax_f(ptranspose)(x), np_transpose(x))
|
|
assert_allclose(jax_f(protate)(x), np_rotate(x))
|
|
|
|
def testCollectivesWithTreesOfDifferentDtypes(self):
|
|
n = len(jax.devices())
|
|
x = {'a': np.arange(1 * n * n, 2 * n * n, dtype=np.float32).reshape([n, n]),
|
|
'b': np.arange(2 * n * n, 3 * n * n, dtype=np.int32).reshape([n, n]),
|
|
'c': np.arange(4 * n * n, 5 * n * n, dtype=np.float32).reshape([n, n]),
|
|
'd': np.arange(6 * n * n, 7 * n * n, dtype=np.int32).reshape([n, n])}
|
|
tree_f = lambda f: partial(tree_util.tree_map, f)
|
|
jax_f = lambda p: pmap(lambda x: p(x, 'i'), 'i')
|
|
np_f = lambda p: tree_f(lambda x: np.broadcast_to(p(x, 0), x.shape))
|
|
assert_allclose = partial(tree_util.tree_multimap,
|
|
partial(self.assertAllClose, check_dtypes=False))
|
|
assert_allclose(jax_f(lax.pmax)(x), np_f(np.max)(x))
|
|
assert_allclose(jax_f(lax.pmin)(x), np_f(np.min)(x))
|
|
assert_allclose(jax_f(lax.psum)(x), np_f(np.sum)(x))
|
|
assert_allclose(jax_f(lax.pmean)(x), np_f(np.mean)(x))
|
|
|
|
def testComplexPsum(self):
|
|
f = pmap(lambda x: x - lax.psum(x, 'i'), axis_name='i')
|
|
|
|
shape = (xla_bridge.device_count(), 4 * 2)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape).view(np.complex64)
|
|
expected = x - np.sum(x, 0)
|
|
|
|
ans = f(x)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
def testNestedBasic(self):
|
|
f = lambda x: lax.psum(lax.psum(x, 'i'), 'j')
|
|
f = pmap(pmap(f, 'i'), 'j')
|
|
|
|
def sum_and_broadcast(x, axis):
|
|
return np.repeat(np.sum(x, axis, keepdims=True), x.shape[axis], axis)
|
|
|
|
shape = (xla_bridge.device_count(), 1, 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
|
|
ans = f(x)
|
|
expected = sum_and_broadcast(sum_and_broadcast(x, 0), 1)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testMismatchedAxisSizes(self):
|
|
n = xla_bridge.device_count()
|
|
f = pmap(lambda x, y: x + y)
|
|
self.assertRaisesRegex(
|
|
ValueError,
|
|
"pmap got inconsistent sizes for array axes to be mapped",
|
|
lambda: f(np.random.randn(n), np.random.randn(n - 1)))
|
|
|
|
@parameterized.named_parameters(
|
|
{"testcase_name": "_mesh={}".format(device_mesh_shape).replace(" ", ""),
|
|
"device_mesh_shape": device_mesh_shape}
|
|
for device_mesh_shape in [(1, 1), (2, -1), (-1, 2)])
|
|
def testNestedShardingAndStacking(self, device_mesh_shape):
|
|
mesh_shape = self._getMeshShape(device_mesh_shape)
|
|
|
|
f = lambda x: x
|
|
f = pmap(pmap(f, 'i'), 'j')
|
|
|
|
shape = mesh_shape + (4,)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
|
|
ans = f(x)
|
|
expected = x
|
|
self.assertEqual(ans.shape, expected.shape)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testPartiallyMapped(self):
|
|
f = pmap(lambda x, y: x, in_axes=(None, 0))
|
|
g = pmap(lambda x, y: x - lax.psum(y, 'i'), axis_name='i', in_axes=(None, 0))
|
|
|
|
mesh_shape = (xla_bridge.device_count(),)
|
|
shape = mesh_shape + (4,)
|
|
x = np.array(3., dtype=np.float32)
|
|
y = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
|
|
f_expected = np.broadcast_to(x, mesh_shape)
|
|
f_ans = f(x, y)
|
|
self.assertAllClose(f_ans, f_expected)
|
|
self.assertIsInstance(f_ans, pxla.ShardedDeviceArray)
|
|
# the output is actually replicated (has the same values in each device buffer)
|
|
# but out_axes is implicitly 0, so we shouldn't have replication in the
|
|
# sharding spec.
|
|
self.assertEqual(f_ans.sharding_spec.replication_factor, 1)
|
|
|
|
g_expected = np.broadcast_to(x - np.sum(y, 0, keepdims=True), shape)
|
|
g_ans = g(x, y)
|
|
self.assertAllClose(g_ans, g_expected)
|
|
self.assertIsInstance(g_ans, pxla.ShardedDeviceArray)
|
|
self.assertEqual(g_ans.sharding_spec.replication_factor, 1)
|
|
|
|
@parameterized.named_parameters(
|
|
{"testcase_name": "_mesh={}".format(device_mesh_shape).replace(" ", ""),
|
|
"device_mesh_shape": device_mesh_shape}
|
|
for device_mesh_shape in [(1, 1), (2, -1), (-1, 2)])
|
|
def testPartiallyMappedNested(self, device_mesh_shape):
|
|
mesh_shape = self._getMeshShape(device_mesh_shape)
|
|
|
|
f = pmap(lambda x, y: x - lax.psum(y, 'i'), axis_name='i', in_axes=(None, 0))
|
|
f = pmap(f, axis_name='j', in_axes=(None, 0))
|
|
|
|
x = 3.
|
|
y = np.arange(prod(mesh_shape), dtype=np.float32).reshape(mesh_shape)
|
|
expected = np.broadcast_to(x - np.sum(y, 1, keepdims=True), mesh_shape)
|
|
|
|
ans = f(x, y)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testJvpAndPartialEval(self):
|
|
@partial(pmap, axis_name='i')
|
|
def f(x):
|
|
return jnp.sin(x)
|
|
|
|
def splitjvp(x):
|
|
_, jvp = linearize(f, x)
|
|
return jvp(jnp.ones_like(x))
|
|
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
expected = np.cos(x)
|
|
|
|
ans = splitjvp(x)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
make_jaxpr(splitjvp)(x) # doesn't crash
|
|
|
|
def testGradBasic(self):
|
|
@partial(pmap, axis_name='i')
|
|
def f(x):
|
|
return jnp.sin(x)
|
|
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
|
|
ans = grad(lambda x: jnp.sum(jnp.sin(x)))(x)
|
|
expected = grad(lambda x: jnp.sum(f(x)))(x)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testGradOfPsum(self):
|
|
@partial(pmap, axis_name='i')
|
|
def f(x):
|
|
return lax.psum(x, axis_name='i')
|
|
|
|
shape = (jax.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
jtu.check_grads(f, (x,), 2, ["fwd", "rev"], 1e-2, 1e-2, eps=1.)
|
|
|
|
def testGradOfJvp(self):
|
|
@partial(pmap, axis_name='i')
|
|
def f(x):
|
|
return jnp.sin(x)
|
|
|
|
def splitjvp(x):
|
|
_, jvp = linearize(f, x)
|
|
return jvp(jnp.ones_like(x))
|
|
|
|
fun = lambda x: jnp.sum(jvp(jnp.sin, (x,), (jnp.ones_like(x),))[1])
|
|
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
|
|
ans = grad(lambda x: jnp.sum(splitjvp(x)))(x)
|
|
expected = grad(fun)(x)
|
|
self.assertAllClose(ans, expected)
|
|
|
|
def testTwoArgsGrad(self):
|
|
def f(x, y):
|
|
return lax.psum(5. * jnp.cos(x) * jnp.sin(y), 'i')
|
|
f = pmap(f, 'i')
|
|
|
|
def g(x, y):
|
|
tot = jnp.sum(5. * jnp.cos(x) * jnp.sin(y))
|
|
return tot * jnp.ones_like(x) # broadcast to map like pjit does
|
|
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
y = 4 + x
|
|
ans = grad(lambda x, y: jnp.sum(g(x, y)))(x, y)
|
|
expected = grad(lambda x, y: jnp.sum(g(x, y)))(x, y)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
@parameterized.named_parameters(
|
|
{"testcase_name": "_mesh={}".format(device_mesh_shape).replace(" ", ""),
|
|
"device_mesh_shape": device_mesh_shape}
|
|
for device_mesh_shape in [(1, 1), (2, -1), (-1, 2)])
|
|
def testNestedWithClosure(self, device_mesh_shape):
|
|
mesh_shape = self._getMeshShape(device_mesh_shape)
|
|
|
|
@partial(pmap, axis_name='i')
|
|
def test_fun(x):
|
|
y = jnp.sum(jnp.sin(x))
|
|
|
|
@partial(pmap, axis_name='j')
|
|
def g(z):
|
|
return 3. * jnp.exp(jnp.sin(x).sum() * jnp.cos(y) * jnp.tan(z))
|
|
|
|
return grad(lambda w: jnp.sum(g(w)))(x)
|
|
|
|
@vmap
|
|
def baseline_fun(x):
|
|
y = jnp.sum(jnp.sin(x))
|
|
|
|
@vmap
|
|
def g(z):
|
|
return 3. * jnp.exp(jnp.sin(x).sum() * jnp.cos(y) * jnp.tan(z))
|
|
|
|
return grad(lambda w: jnp.sum(g(w)))(x)
|
|
|
|
shape = mesh_shape + (4,)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
|
|
ans = grad(lambda x: jnp.sum(test_fun(x)))(x)
|
|
expected = grad(lambda x: jnp.sum(baseline_fun(x)))(x)
|
|
self.assertAllClose(ans, expected, atol=1e-3)
|
|
|
|
def testShardedDeviceArrays(self):
|
|
f = lambda x: 2 * x
|
|
f = pmap(f, axis_name='i')
|
|
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
|
|
# test that we can pass in and out ShardedDeviceArrays
|
|
y = f(x)
|
|
self.assertIsInstance(y, jnp.ndarray)
|
|
self.assertIsInstance(y, pxla.ShardedDeviceArray)
|
|
self.assertAllClose(y, 2 * x, check_dtypes=False)
|
|
z = f(y)
|
|
self.assertIsInstance(z, pxla.ShardedDeviceArray)
|
|
self.assertAllClose(z, 2 * 2 * x, check_dtypes=False)
|
|
|
|
# test that we can pass in a regular DeviceArray
|
|
y = f(device_put(x))
|
|
self.assertIsInstance(y, pxla.ShardedDeviceArray)
|
|
self.assertAllClose(y, 2 * x, check_dtypes=False)
|
|
|
|
# test that we can pass a ShardedDeviceArray to a regular jit computation
|
|
z = y + y
|
|
self.assertAllClose(z, 2 * 2 * x, check_dtypes=False)
|
|
|
|
# test that we can handle device movement on dispatch
|
|
y.device_buffers = y.device_buffers[::-1]
|
|
z = f(y)
|
|
self.assertAllClose(z, 2 * 2 * x[::-1], check_dtypes=False)
|
|
|
|
# test that the repr doesn't crash
|
|
repr(z)
|
|
|
|
# Tests edge cases in lax._reshape_sharded_device_array
|
|
@parameterized.named_parameters(
|
|
{"testcase_name": "_in={}_out={}".format(in_shape, out_shape)
|
|
.replace(" ", ""),
|
|
"in_shape": in_shape, "out_shape": out_shape}
|
|
for in_shape, out_shape in [
|
|
[(1,1), (1,)], [(1,), (1,1)], [(1,), ()], [(4,7), (2,2,7)]
|
|
])
|
|
def testShardedDeviceArrayReshape(self, in_shape, out_shape):
|
|
if xla_bridge.device_count() < max(in_shape[:1] + out_shape[:1]):
|
|
raise SkipTest("not enough devices")
|
|
|
|
x = np.arange(prod(in_shape)).reshape(in_shape)
|
|
sharded_x = pmap(lambda x: x)(x)
|
|
self.assertAllClose(sharded_x.reshape(out_shape), x.reshape(out_shape),
|
|
check_dtypes=False)
|
|
|
|
def testPsumMultiple(self):
|
|
f = lambda x: lax.psum(x, ('i', 'j'))
|
|
f = pmap(pmap(f, 'i'), 'j')
|
|
|
|
def sum_and_broadcast(x, axis):
|
|
return np.repeat(np.sum(x, axis, keepdims=True), x.shape[axis], axis)
|
|
|
|
device_count = xla_bridge.device_count()
|
|
num_pairs, ragged = divmod(device_count, 2)
|
|
if num_pairs > 1 and not ragged:
|
|
shape = (num_pairs, 2, 4)
|
|
else:
|
|
shape = (device_count, 1, 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
|
|
ans = f(x)
|
|
expected = sum_and_broadcast(sum_and_broadcast(x, 0), 1)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testPsumReplicaGroups(self):
|
|
replicas = xla_bridge.device_count()
|
|
if replicas % 2 != 0:
|
|
raise SkipTest
|
|
axis_index_groups = np.arange(replicas).reshape(
|
|
2, replicas // 2).tolist()
|
|
f = lambda x: x - lax.psum(x, 'i', axis_index_groups=axis_index_groups)
|
|
f = pmap(f, 'i')
|
|
|
|
shape = (replicas, 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
def sum_helper(a):
|
|
return np.broadcast_to(a.sum(0, keepdims=True),
|
|
(replicas // 2, x.shape[1]))
|
|
expected_psum_1 = sum_helper(x[:replicas // 2])
|
|
expected_psum_2 = sum_helper(x[replicas // 2:])
|
|
expected_psum = np.concatenate([expected_psum_1, expected_psum_2], 0)
|
|
expected = x - expected_psum
|
|
|
|
ans = f(x)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testNestedPmapReplicaGroups(self):
|
|
replicas = xla_bridge.device_count()
|
|
if replicas % 4 != 0:
|
|
raise SkipTest
|
|
axis_index_groups = np.arange(replicas // 2).reshape(
|
|
2, replicas // 4).tolist()
|
|
f = lambda x: x - lax.psum(x, 'i', axis_index_groups=axis_index_groups)
|
|
f1 = pmap(pmap(f, 'i'), 'j')
|
|
f2 = pmap(lambda x: pmap(f, 'i')(x) + 1., 'j') # "imperfectly nested" case
|
|
f3 = pmap(pmap(f, 'j'), 'i')
|
|
|
|
shape = (2, replicas // 2, 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
def sum_helper_f1(a):
|
|
return np.broadcast_to(a.sum(1, keepdims=True),
|
|
(shape[0], shape[1] // 2, shape[2]))
|
|
expected_psum_1 = sum_helper_f1(x[:, :replicas // 4])
|
|
expected_psum_2 = sum_helper_f1(x[:, replicas // 4:])
|
|
expected_psum = np.concatenate([expected_psum_1, expected_psum_2], 1)
|
|
expected = x - expected_psum
|
|
ans = f1(x)
|
|
self.assertAllClose(ans, expected)
|
|
|
|
expected = x - expected_psum + 1.
|
|
ans = f2(x)
|
|
self.assertAllClose(ans, expected)
|
|
|
|
shape = (replicas // 2, 2, 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
def sum_helper_f3(a):
|
|
return np.broadcast_to(a.sum(0, keepdims=True),
|
|
(shape[0] // 2, shape[1], shape[2]))
|
|
expected_psum_1 = sum_helper_f3(x[:replicas // 4])
|
|
expected_psum_2 = sum_helper_f3(x[replicas // 4:])
|
|
expected_psum = np.concatenate([expected_psum_1, expected_psum_2], 0)
|
|
expected = x - expected_psum
|
|
ans = f3(x)
|
|
self.assertAllClose(ans, expected)
|
|
|
|
def testAxisGroups(self):
|
|
axis_env = xla.AxisEnv(8, ('i', 'j'), (4, 2))
|
|
groups = xla.axis_groups(axis_env, 'i')
|
|
self.assertEqual(groups, ((0, 2, 4, 6), (1, 3, 5, 7)))
|
|
|
|
groups = xla.axis_groups(axis_env, 'j')
|
|
self.assertEqual(groups, ((0, 1), (2, 3), (4, 5), (6, 7)))
|
|
|
|
groups = xla.axis_groups(axis_env, ('i', 'j'))
|
|
self.assertEqual(groups, ((0, 1, 2, 3, 4, 5, 6, 7,),))
|
|
|
|
groups = xla.axis_groups(axis_env, ('j', 'i'))
|
|
self.assertEqual(len(groups), 1)
|
|
self.assertEqual((tuple(sorted(groups[0])),),
|
|
((0, 1, 2, 3, 4, 5, 6, 7,),)) # order doesn't matter
|
|
|
|
@jtu.skip_on_devices("cpu", "gpu")
|
|
def testCollectivePermute(self):
|
|
device_count = xla_bridge.device_count()
|
|
rotation = [(i, (i + 1) % device_count) for i in range(device_count)]
|
|
f = lambda x: lax.ppermute(x, perm=rotation, axis_name='i')
|
|
f = pmap(f, 'i')
|
|
|
|
x = jnp.arange(4 * device_count).reshape((device_count, 4))
|
|
ans = f(x)
|
|
expected = np.roll(x, shift=1, axis=0)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
@jtu.skip_on_devices("cpu", "gpu")
|
|
def testCollectivePermuteGrad(self):
|
|
device_count = xla_bridge.device_count()
|
|
shift_right = [(i, (i + 1)) for i in range(device_count - 1)]
|
|
f = lambda x: lax.ppermute(x, perm=shift_right, axis_name='i')
|
|
y = np.pi + np.arange(device_count, dtype=np.float32)
|
|
g = lambda x: jnp.sum(y * pmap(f, 'i')(x))
|
|
|
|
x = np.arange(device_count, dtype=np.float32)
|
|
ans = grad(g)(x)
|
|
expected = np.concatenate([np.pi + np.arange(1, device_count), [0]])
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
@jtu.skip_on_devices("cpu", "gpu")
|
|
def testCollectivePermuteCyclicGrad(self):
|
|
device_count = xla_bridge.device_count()
|
|
shift_right = [(i, (i + 1) % device_count) for i in range(device_count)]
|
|
f = lambda x: lax.ppermute(x, perm=shift_right, axis_name='i')
|
|
y = np.pi + np.arange(device_count, dtype=np.float32)
|
|
g = lambda x: jnp.sum(y * pmap(f, 'i')(x))
|
|
|
|
x = np.arange(device_count, dtype=np.float32)
|
|
ans = grad(g)(x)
|
|
expected = np.roll(np.pi + np.arange(device_count), 1)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
@jtu.skip_on_devices("cpu")
|
|
def testCollectivePermuteCyclicWithPShuffle(self):
|
|
device_count = xla_bridge.device_count()
|
|
values = np.arange(device_count)
|
|
shift_right = [(i - 1) % device_count for i in range(device_count)]
|
|
f = lambda x: lax.pshuffle(x, perm=shift_right, axis_name='i')
|
|
expected = np.roll(values, -1)
|
|
ans = np.asarray(pmap(f, "i")(values))
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
@jtu.skip_on_devices("cpu")
|
|
def testPShuffleWithBadPerm(self):
|
|
device_count = xla_bridge.device_count()
|
|
bad_perm = list(range(device_count))
|
|
bad_perm[0] = 1
|
|
f = lambda x: lax.pshuffle(x, perm=bad_perm, axis_name='i')
|
|
g = lambda: pmap(f, "i")(np.arange(device_count))
|
|
self.assertRaisesRegex(
|
|
AssertionError,
|
|
"Given `perm` does not represent a real permutation: \\[1.*\\]", g)
|
|
|
|
@jtu.skip_on_devices("cpu", "gpu")
|
|
def testPpermuteWithZipObject(self):
|
|
# https://github.com/google/jax/issues/1703
|
|
num_devices = xla_bridge.device_count()
|
|
perm = [num_devices - 1] + list(range(num_devices - 1))
|
|
f = pmap(
|
|
lambda x: lax.ppermute(x, "i", zip(range(num_devices), perm)), "i")
|
|
result = f(jnp.arange(num_devices, dtype=jnp.float32))
|
|
expected = jnp.asarray(perm, dtype=jnp.float32)
|
|
self.assertAllClose(result, expected)
|
|
|
|
@jtu.skip_on_devices("cpu", "gpu")
|
|
def testRule30(self):
|
|
# This is a test of collective_permute implementing a simple halo exchange
|
|
# to run a rule 30 simulation: https://en.wikipedia.org/wiki/Rule_30
|
|
# Halo exchange should be useful in spatially-sharded convolutions and in
|
|
# other simulations.
|
|
device_count = xla_bridge.device_count()
|
|
|
|
def send_right(x, axis_name):
|
|
left_perm = [(i, (i + 1) % device_count) for i in range(device_count)]
|
|
return lax.ppermute(x, perm=left_perm, axis_name=axis_name)
|
|
|
|
def send_left(x, axis_name):
|
|
left_perm = [((i + 1) % device_count, i) for i in range(device_count)]
|
|
return lax.ppermute(x, perm=left_perm, axis_name=axis_name)
|
|
|
|
def update_board(board):
|
|
left = board[:-2]
|
|
right = board[2:]
|
|
center = board[1:-1]
|
|
return lax.bitwise_xor(left, lax.bitwise_or(center, right))
|
|
|
|
@partial(pmap, axis_name='i')
|
|
def step(board_slice):
|
|
left, right = board_slice[:1], board_slice[-1:]
|
|
right, left = send_left(left, 'i'), send_right(right, 'i')
|
|
enlarged_board_slice = jnp.concatenate([left, board_slice, right])
|
|
return update_board(enlarged_board_slice)
|
|
|
|
board = np.zeros(40, dtype=bool)
|
|
board[board.shape[0] // 2] = True
|
|
reshaped_board = board.reshape((device_count, -1))
|
|
|
|
boards = []
|
|
def print_board(board):
|
|
boards.append(''.join('*' if x else ' ' for x in board.ravel()))
|
|
|
|
print_board(reshaped_board)
|
|
for _ in range(20):
|
|
reshaped_board = step(reshaped_board)
|
|
print_board(reshaped_board)
|
|
|
|
ans = '\n'.join(boards)
|
|
expected = '\n'.join((
|
|
' * ',
|
|
' *** ',
|
|
' ** * ',
|
|
' ** **** ',
|
|
' ** * * ',
|
|
' ** **** *** ',
|
|
' ** * * * ',
|
|
' ** **** ****** ',
|
|
' ** * *** * ',
|
|
' ** **** ** * *** ',
|
|
' ** * * **** ** * ',
|
|
' ** **** ** * * **** ',
|
|
' ** * *** ** ** * * ',
|
|
' ** **** ** *** *** ** *** ',
|
|
' ** * * *** * *** * * ',
|
|
' ** **** ** * * ***** ******* ',
|
|
' ** * *** **** * *** * ',
|
|
' ** **** ** *** ** ** * *** ',
|
|
' ** * * *** * ** *** **** ** * ',
|
|
' ** **** ** * ****** * * *** ****',
|
|
' * * *** **** **** *** ** * ',
|
|
))
|
|
|
|
print(ans)
|
|
self.assertEqual(ans, expected)
|
|
|
|
@jtu.skip_on_devices("cpu", "gpu")
|
|
def testReduceMax(self):
|
|
f = pmap(lambda x: x - lax.pmax(x, 'i'), axis_name='i')
|
|
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
expected = x - np.max(x, 0)
|
|
|
|
ans = f(x)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
@jtu.skip_on_devices("cpu", "gpu")
|
|
def testReduceMin(self):
|
|
f = pmap(lambda x: x - lax.pmin(x, 'i'), axis_name='i')
|
|
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
expected = x - np.min(x, 0)
|
|
|
|
ans = f(x)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testDeviceCountError(self):
|
|
device_count = xla_bridge.device_count()
|
|
|
|
f = pmap(lambda x: x)
|
|
x = jnp.arange(device_count + 1)
|
|
self.assertRaisesRegex(ValueError, ".*requires.*replicas", lambda: f(x))
|
|
|
|
f = pmap(lambda x: x)
|
|
x = np.ones((device_count + 1, 10))
|
|
self.assertRaisesRegex(ValueError, ".*requires.*replicas", lambda: f(x))
|
|
|
|
f = pmap(lambda x: pmap(lambda x: x)(x))
|
|
x = np.ones((device_count, 2, 10))
|
|
self.assertRaisesRegex(ValueError, ".*requires.*replicas", lambda: f(x))
|
|
|
|
def testPmapConstant(self):
|
|
device_count = xla_bridge.device_count()
|
|
f = pmap(lambda x: 3)
|
|
x = jnp.arange(device_count)
|
|
with jtu.count_jit_and_pmap_compiles() as count:
|
|
ans = f(x)
|
|
self.assertEqual(count[0], 0)
|
|
expected = np.repeat(3, device_count)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
f = pmap(lambda x: (x, 3))
|
|
x = np.arange(device_count)
|
|
with jtu.count_jit_and_pmap_compiles() as count:
|
|
_, ans = f(x)
|
|
self.assertEqual(count[0], 1)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testPmapConstantDevices(self):
|
|
if xla_bridge.device_count() == 1:
|
|
raise SkipTest("this test requires multiple devices")
|
|
|
|
devices = xla_bridge.devices()[:-1]
|
|
shuffle(devices)
|
|
f = pmap(lambda x: 3, devices=devices)
|
|
x = jnp.arange(len(devices))
|
|
with jtu.count_jit_and_pmap_compiles() as count:
|
|
ans = f(x)
|
|
self.assertEqual(count[0], 0)
|
|
expected = np.repeat(3, len(devices))
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
# Test that 'ans' was properly replicated across devices.
|
|
self.assertEqual([b.device() for b in ans.device_buffers], devices)
|
|
|
|
def testPmapConstantError(self):
|
|
device_count = xla_bridge.device_count()
|
|
f = pmap(lambda x: 3)
|
|
x = jnp.arange(device_count + 1)
|
|
self.assertRaisesRegex(
|
|
ValueError, r"Cannot replicate across \d+ replicas because only \d+ "
|
|
r"local devices are available.", lambda: f(x))
|
|
|
|
f = pmap(lambda x: 3, devices=[xla_bridge.devices()[0]])
|
|
x = jnp.arange(2)
|
|
self.assertRaisesRegex(
|
|
ValueError, "Cannot replicate across 2 replicas because only 1 "
|
|
"local devices are available.", lambda: f(x))
|
|
|
|
def testNestedPmapConstant(self):
|
|
if xla_bridge.device_count() == 1:
|
|
raise SkipTest("this test requires multiple devices")
|
|
|
|
f = pmap(pmap(lambda x: 3))
|
|
shape = (2, xla_bridge.device_count() // 2, 3)
|
|
x = jnp.arange(prod(shape)).reshape(shape)
|
|
with jtu.count_jit_and_pmap_compiles() as count:
|
|
ans = f(x)
|
|
self.assertEqual(count[0], 0)
|
|
expected = 3 * np.ones(shape[:2])
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
# Test that 'ans' was properly replicated across devices.
|
|
expected_sharded = pmap(pmap(lambda x: x))(expected)
|
|
self.assertEqual([b.device() for b in ans.device_buffers],
|
|
[b.device() for b in expected_sharded.device_buffers])
|
|
|
|
f = pmap(pmap(lambda x: (x, 3)))
|
|
x_sharded, ans = f(x)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
self.assertEqual([b.device() for b in ans.device_buffers],
|
|
[b.device() for b in x_sharded.device_buffers])
|
|
|
|
|
|
def testNestedPmapConstantDevices(self):
|
|
raise SkipTest("Nested pmaps with devices not yet implemented")
|
|
|
|
if xla_bridge.device_count() < 6:
|
|
raise SkipTest("this test requires >= 6 devices")
|
|
|
|
devices = xla_bridge.devices()[:-2]
|
|
shuffle(devices)
|
|
f = pmap(pmap(lambda x: 3), devices=devices)
|
|
shape = (2, len(devices) // 2, 3)
|
|
x = jnp.arange(prod(shape)).reshape(shape)
|
|
with jtu.count_jit_and_pmap_compiles() as count:
|
|
ans = f(x)
|
|
self.assertEqual(count[0], 0)
|
|
expected = 3 * np.ones(shape[:2])
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
# Test that 'ans' was properly replicated across devices.
|
|
expected_sharded = pmap(pmap(lambda x: x), devices=devices)(expected)
|
|
self.assertEqual([b.device() for b in ans.device_buffers],
|
|
[b.device() for b in expected_sharded.device_buffers])
|
|
|
|
def testNestedPmapConstantError(self):
|
|
f = pmap(pmap(lambda x: 3))
|
|
shape = (2, xla_bridge.device_count() // 2 + 1, 3)
|
|
x = jnp.arange(prod(shape)).reshape(shape)
|
|
self.assertRaisesRegex(
|
|
ValueError, r"Cannot replicate across \d+ replicas because only \d+ "
|
|
r"local devices are available.", lambda: f(x))
|
|
|
|
if xla_bridge.device_count() > 1:
|
|
f = pmap(pmap(lambda x: 3), devices=xla_bridge.devices()[:-1])
|
|
shape = (2, xla_bridge.device_count() // 2, 3)
|
|
x = jnp.arange(prod(shape)).reshape(shape)
|
|
self.assertRaisesRegex(
|
|
ValueError, r"Cannot replicate across \d+ replicas because only \d+ "
|
|
r"local devices are available.", lambda: f(x))
|
|
|
|
def testCollectiveConstant(self):
|
|
device_count = xla_bridge.device_count()
|
|
f = pmap(lambda x: lax.psum(1, 'i'), 'i')
|
|
x = jnp.arange(device_count)
|
|
ans = f(x)
|
|
expected = np.repeat(device_count, device_count)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testCollectiveConstantNested(self):
|
|
device_count = xla_bridge.device_count()
|
|
|
|
@partial(pmap, axis_name='i')
|
|
def f(x):
|
|
@partial(pmap, axis_name='j')
|
|
def g(y):
|
|
a = lax.psum(1, 'i')
|
|
b = lax.psum(1, 'j')
|
|
c = lax.psum(1, ('i', 'j'))
|
|
return a, b, c
|
|
return g(x)
|
|
|
|
shape = (device_count, 1, 4)
|
|
x = jnp.arange(prod(shape)).reshape(shape)
|
|
a, b, c = f(x)
|
|
|
|
self.assertEqual(a.shape, shape[:-1])
|
|
self.assertEqual(b.shape, shape[:-1])
|
|
self.assertEqual(c.shape, shape[:-1])
|
|
|
|
self.assertEqual(a.ravel()[0], device_count)
|
|
self.assertEqual(b.ravel()[0], 1)
|
|
self.assertEqual(c.ravel()[0], device_count * 1)
|
|
|
|
def testAxisIndex(self):
|
|
device_count = xla_bridge.device_count()
|
|
f = pmap(lambda x: x + pxla.axis_index('i'), 'i')
|
|
x = jnp.ones(device_count)
|
|
ans = f(x)
|
|
expected = 1 + np.arange(device_count)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testVmapOfPmap(self):
|
|
device_count = xla_bridge.device_count()
|
|
f0 = lambda x: x
|
|
f1 = pmap(f0, axis_name='i')
|
|
ax = np.random.randn(2, device_count, 50, 60)
|
|
bx = vmap(f1)(ax)
|
|
self.assertAllClose(ax, bx, check_dtypes=False)
|
|
|
|
def testVmapOfPmap2(self):
|
|
N_DEVICES = xla_bridge.device_count()
|
|
keys = random.split(random.PRNGKey(1), 13) # [13, 2]
|
|
|
|
@pmap
|
|
def g(key):
|
|
params = random.normal(key, ())
|
|
return 0.
|
|
|
|
@vmap
|
|
def s(keys):
|
|
keys = jnp.broadcast_to(keys, (N_DEVICES,) + keys.shape)
|
|
return g(keys)
|
|
|
|
ans = s(keys) # doesn't crash
|
|
self.assertEqual(ans.shape, (13, N_DEVICES))
|
|
|
|
def testVmapOfPmapNonLeadingAxis(self):
|
|
device_count = xla_bridge.device_count()
|
|
f0 = lambda x: x
|
|
f1 = pmap(f0, axis_name='i')
|
|
ax = np.random.randn(device_count, 2, 50, 60)
|
|
bx = vmap(f1, in_axes=2, out_axes=2)(ax)
|
|
self.assertAllClose(ax, bx, check_dtypes=False)
|
|
|
|
def testVmapOfPmapTuple(self):
|
|
device_count = xla_bridge.device_count()
|
|
f0 = lambda *x: x
|
|
f1 = pmap(f0, axis_name='i')
|
|
|
|
ax = np.random.randn(device_count, 2, 50, 60)
|
|
ay = np.random.randn(device_count, 30, 2)
|
|
az1 = np.random.randn(device_count, 20)
|
|
az2 = np.random.randn(2, device_count, 20)
|
|
|
|
bx, by, bz = vmap(f1, in_axes=(1, 2, (None, 0)), out_axes=(1, 2, 0))(ax, ay, (az1, az2))
|
|
|
|
self.assertAllClose(ax, bx, check_dtypes=False)
|
|
self.assertAllClose(ay, by, check_dtypes=False)
|
|
|
|
bz1, bz2 = bz
|
|
expected_bz1 = np.broadcast_to(az1, (2,) + az1.shape)
|
|
self.assertAllClose(expected_bz1, bz1, check_dtypes=False)
|
|
self.assertAllClose(bz2, bz2, check_dtypes=False)
|
|
|
|
@jtu.skip_on_devices("gpu")
|
|
def testPswapaxes(self):
|
|
device_count = xla_bridge.device_count()
|
|
# TODO: AllToAll not yet implemented on XLA:CPU
|
|
if jtu.device_under_test() == "cpu":
|
|
device_count = 1
|
|
shape = (device_count, 3, device_count, 5)
|
|
x = np.arange(prod(shape)).reshape(shape)
|
|
|
|
ans = pmap(lambda x: lax.pswapaxes(x, 'i', 1), axis_name='i')(x)
|
|
expected = np.swapaxes(x, 0, 2)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testReshardInput(self):
|
|
if xla_bridge.device_count() < 6:
|
|
raise SkipTest("testReshardInput requires 6 devices")
|
|
# Manually construct a ShardedDeviceArray with the wrong sharding for the
|
|
# subsequent pmap
|
|
shard_shape = (3,2)
|
|
shard = jnp.arange(jnp.prod(shard_shape)).reshape(shard_shape)
|
|
bufs = [xla.device_put(shard, d) for d in xla_bridge.devices()[:4]]
|
|
aval = ShapedArray((6,4), shard.dtype)
|
|
sharding_spec = pxla.ShardingSpec(
|
|
shards_per_axis=(2, 2),
|
|
is_axis_materialized=(True, True),
|
|
replication_factor=2)
|
|
arr = pxla.ShardedDeviceArray(aval, sharding_spec, bufs)
|
|
|
|
r = pmap(lambda x: x + 1)(arr)
|
|
self.assertAllClose(r, arr + 1)
|
|
self.assertEqual(len(r.device_buffers), 6)
|
|
|
|
@ignore_soft_pmap_warning()
|
|
def testSoftPmapPsum(self):
|
|
n = 4 * xla_bridge.device_count()
|
|
def f(x):
|
|
return x / lax.psum(x, 'i')
|
|
ans = soft_pmap(f, 'i')(jnp.ones(n))
|
|
expected = np.ones(n) / n
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
@ignore_soft_pmap_warning()
|
|
def testSoftPmapAxisIndex(self):
|
|
n = 4 * xla_bridge.device_count()
|
|
def f(x):
|
|
return x * lax.axis_index('i')
|
|
ans = soft_pmap(f, 'i')(2 * jnp.ones(n))
|
|
expected = 2 * np.arange(n)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
@ignore_soft_pmap_warning()
|
|
def testSoftPmapOfJit(self):
|
|
n = 4 * xla_bridge.device_count()
|
|
def f(x):
|
|
return 3 * x
|
|
ans = soft_pmap(jit(f), 'i')(np.arange(n))
|
|
expected = 3 * np.arange(n)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
@ignore_soft_pmap_warning()
|
|
def testSoftPmapNested(self):
|
|
n = 4 * xla_bridge.device_count()
|
|
|
|
@partial(soft_pmap, axis_name='i')
|
|
@partial(soft_pmap, axis_name='j')
|
|
def f(x):
|
|
i_size = lax.psum(1, 'i')
|
|
return x + lax.axis_index('i') + i_size * lax.axis_index('j')
|
|
|
|
ans = f(jnp.zeros((n, n)))
|
|
expected = np.arange(n ** 2).reshape(n, n).T
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
@ignore_soft_pmap_warning()
|
|
def testGradOfSoftPmap(self):
|
|
n = 4 * xla_bridge.device_count()
|
|
|
|
@partial(soft_pmap, axis_name='i')
|
|
def f(x):
|
|
return x * lax.axis_index('i')
|
|
|
|
ans = grad(lambda x: jnp.sum(f(x)))(jnp.zeros((n, n)))
|
|
expected = np.repeat(np.arange(n)[:, None], n, axis=1)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
@ignore_soft_pmap_warning()
|
|
def testSoftPmapDevicePersistence(self):
|
|
device_count = xla_bridge.device_count()
|
|
shape = (2 * 2 * device_count, 2, 3)
|
|
|
|
# check that we can maintain device persistence across calls
|
|
x = np.arange(prod(shape)).reshape(shape)
|
|
x = soft_pmap(lambda x: x)(x)
|
|
self.assertIsInstance(x, pxla.ShardedDeviceArray)
|
|
x._npy_value = np.float32(np.nan) # can't be coerced to ndarray for xfer
|
|
x = soft_pmap(lambda x: x)(x) # doesn't crash
|
|
self.assertIsInstance(x, pxla.ShardedDeviceArray)
|
|
|
|
# check that we don't crash when we can't maintain device persistence
|
|
x = np.arange(prod(shape)).reshape(shape)
|
|
x = soft_pmap(lambda x: x)(x)
|
|
self.assertIsInstance(x, pxla.ShardedDeviceArray)
|
|
y = x.reshape(device_count, -1)
|
|
self.assertIsInstance(y, xla.DeviceArray) # should have forced collection
|
|
soft_pmap(lambda x: x)(y) # doesn't crash
|
|
z = x + 2
|
|
self.assertIsInstance(z, xla.DeviceArray) # should have forced collection
|
|
x._npy_value = np.float32(np.nan) # can't be coerced to ndarray for xfer
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
'.*does not match host shape or layout of computation parameter 0.*',
|
|
lambda: x + 2)
|
|
|
|
# check that different axis merges aren't a problem
|
|
x = np.arange(prod(shape)).reshape(shape)
|
|
x = soft_pmap(lambda x: x)(x)
|
|
self.assertIsInstance(x, pxla.ShardedDeviceArray)
|
|
x = x.reshape(2 * device_count, 2, 2, 3) # axis merge of the wrong size
|
|
self.assertIsInstance(x, xla.DeviceArray) # should have forced collection
|
|
|
|
def testSoftPmapAllToAll(self):
|
|
raise SkipTest("the underlying code here is broken") # TODO(mattjj)
|
|
n = 4 * xla_bridge.device_count()
|
|
def f(x):
|
|
return lax.all_to_all(x, 'i', 0, 0)
|
|
ans = soft_pmap(f, 'i')(jnp.arange(n ** 2).reshape(n, n))
|
|
expected = np.arange(n ** 2).reshape(n, n).T
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testShardedDeviceArrayBlockUntilReady(self):
|
|
x = np.arange(xla_bridge.device_count())
|
|
x = pmap(lambda x: x)(x)
|
|
x.block_until_ready() # doesn't crash
|
|
|
|
def testJitPmapComposition(self):
|
|
f = lambda x: x - lax.psum(x, 'i')
|
|
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
expected = x - np.sum(x, 0)
|
|
|
|
ans = jit(pmap(f, 'i'))(x)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
ans = pmap(jit(f), 'i')(x)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testMakeJaxprOfOpenSpmd(self):
|
|
f = lambda x: x - lax.psum(x, 'i')
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
make_jaxpr(f)(x) # doesn't crash
|
|
|
|
def testCompositionWithJitTwice(self):
|
|
@jit
|
|
def f(x):
|
|
y = 2 * x
|
|
|
|
@jit
|
|
def g(z):
|
|
return pmap(lambda x: x * y)(z)
|
|
|
|
return g(x)
|
|
|
|
f(np.arange(1.).reshape((1, 1))) # doesn't crash
|
|
|
|
def testIssue1065(self):
|
|
# from https://github.com/google/jax/issues/1065
|
|
device_count = xla_bridge.device_count()
|
|
|
|
def multi_step_pmap(state, count):
|
|
@partial(pmap, axis_name='x')
|
|
@jit
|
|
def exchange_and_multi_step(state):
|
|
return state
|
|
|
|
@jit
|
|
def time_evolution(state):
|
|
return lax.fori_loop(0, count, lambda i, s: exchange_and_multi_step(s), state)
|
|
|
|
return time_evolution(state)
|
|
|
|
multi_step_pmap(jnp.zeros((device_count,)), count=1)
|
|
|
|
def testShardedDeviceArrayGetItem(self):
|
|
f = lambda x: 2 * x
|
|
f = pmap(f, axis_name='i')
|
|
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
|
|
y = f(x)
|
|
self.assertIsInstance(y, jnp.ndarray)
|
|
self.assertIsInstance(y, pxla.ShardedDeviceArray)
|
|
|
|
z = y[0] # doesn't crash
|
|
self.assertAllClose(z, 2 * x[0], check_dtypes=False)
|
|
|
|
def testPostProcessMap(self):
|
|
# TODO(mattjj): this fails with multiple devices (unless we add a jit)
|
|
# because we assume eager ops (like scan here) can't require more than 1
|
|
# replica.
|
|
raise SkipTest("need eager multi-replica support")
|
|
# test came from https://github.com/google/jax/issues/1369
|
|
nrep = xla_bridge.device_count()
|
|
|
|
def pmvm(a, b):
|
|
a = a.reshape((nrep, -1, a.shape[1]))
|
|
func = pmap(lambda z: jnp.dot(z, b))
|
|
return func(a).reshape(b.shape)
|
|
|
|
n = nrep * 2
|
|
rng = np.random.RandomState(0)
|
|
a = rng.randn(n, n)
|
|
b = rng.randn(n)
|
|
|
|
iters = jnp.arange(5)
|
|
def body(carry, i):
|
|
return pmvm(a, carry), i
|
|
ans, _ = lax.scan(body, b, iters)
|
|
|
|
expected = np.linalg.matrix_power(a, 5).dot(b)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testManyArgs(self):
|
|
@pmap
|
|
def f(args_list):
|
|
return sum(args_list)
|
|
|
|
vals = list(range(500))
|
|
ndevices = xla_bridge.device_count()
|
|
self.assertAllClose(f(jnp.array([vals] * ndevices)),
|
|
jnp.array([sum(vals)] * ndevices))
|
|
|
|
def testPostProcessMap(self):
|
|
# code from https://github.com/google/jax/issues/2787
|
|
def vv(x, y):
|
|
"""Vector-vector multiply"""
|
|
return jnp.dot(x, y)
|
|
|
|
def distributed_matrix_vector(x, y):
|
|
"""Matrix vector multiply. First batch it and then row by row"""
|
|
fv = lambda z: lax.map(lambda j: vv(j, y), z)
|
|
res = pmap(fv)(x.reshape((jax.device_count(), -1) + tuple(x.shape[1:])))
|
|
res = res.reshape(res.shape[0] * res.shape[1], *res.shape[2:])
|
|
return res
|
|
|
|
key = random.PRNGKey(1)
|
|
x = random.normal(key, (80, 50))
|
|
batched_mvm = vmap(lambda b: distributed_matrix_vector(x, b), in_axes=0)
|
|
y = random.normal(key, (10, 50, 1))
|
|
result = batched_mvm(y)
|
|
expected = jnp.einsum('ij,njk->nik', x, y)
|
|
tol = 1e-1 if jtu.device_under_test() == "tpu" else 1e-3
|
|
self.assertAllClose(result, expected, check_dtypes=False, atol=tol, rtol=tol)
|
|
|
|
def testAxisIndexRemat(self):
|
|
# https://github.com/google/jax/issues/2716
|
|
n = len(jax.devices())
|
|
|
|
def f(key):
|
|
key = random.fold_in(key, jax.lax.axis_index('i'))
|
|
return random.bernoulli(key, p=0.5)
|
|
|
|
keys = random.split(random.PRNGKey(0), n)
|
|
jax.pmap(jax.remat(f), axis_name='i')(keys)
|
|
|
|
def testPmapMapVmapCombinations(self):
|
|
# https://github.com/google/jax/issues/2822
|
|
def vv(x, y):
|
|
"""Vector-vector multiply"""
|
|
return jnp.dot(x, y)
|
|
|
|
def matrix_vector(x, y, parallel=True):
|
|
"""Matrix vector multiply. First batch it and then row by row"""
|
|
fv = lambda z: lax.map(lambda j: vv(j, y), z)
|
|
if parallel:
|
|
# split leading axis in two
|
|
new_x = x.reshape((jax.device_count(), -1, *x.shape[1:]))
|
|
# apply map
|
|
new_res = pmap(fv)(new_x)
|
|
# reshape back out
|
|
res = new_res.reshape(x.shape[0], *new_res.shape[2:])
|
|
else:
|
|
res = fv(x)
|
|
return res
|
|
|
|
x = random.normal(random.PRNGKey(1), (80, 5))
|
|
y = random.normal(random.PRNGKey(1), (10, 5))
|
|
|
|
result1 = vmap(lambda b: matrix_vector(x, b, True))(y) # vmap + pmap
|
|
result2 = lax.map(lambda b: matrix_vector(x, b, False), y) # map + map
|
|
result3 = lax.map(lambda b: matrix_vector(x, b, True), y) # map + pmap
|
|
result4 = jnp.stack([matrix_vector(x, b, False) for b in y]) # none + map
|
|
|
|
self.assertAllClose(result1, result2, check_dtypes=False, atol=1e-3, rtol=1e-3)
|
|
self.assertAllClose(result1, result3, check_dtypes=False, atol=1e-3, rtol=1e-3)
|
|
self.assertAllClose(result1, result4, check_dtypes=False, atol=1e-3, rtol=1e-3)
|
|
|
|
def testPmapAxisNameError(self):
|
|
# https://github.com/google/jax/issues/3120
|
|
a = np.arange(4)[np.newaxis,:]
|
|
def test(x):
|
|
return jax.lax.psum(x, axis_name='batch')
|
|
|
|
with self.assertRaisesRegex(NameError, "unbound axis name: batch"):
|
|
jax.pmap(test)(a)
|
|
|
|
def testPsumOnBooleanDtype(self):
|
|
# https://github.com/google/jax/issues/3123
|
|
n = xla_bridge.device_count()
|
|
if n > 1:
|
|
x = jnp.array([True, False])
|
|
|
|
out = pmap(lambda x: jax.lax.psum(x, 'i'), 'i')(x)
|
|
self.assertEqual(list(out), [1, 1])
|
|
|
|
out = pmap(lambda x: jax.lax.pmean(x, 'i'), 'i')(x)
|
|
self.assertEqual(list(out), [1/2, 1/2])
|
|
else:
|
|
x = jnp.array([True])
|
|
|
|
out = pmap(lambda x: jax.lax.psum(x, 'i'), 'i')(x)
|
|
self.assertEqual(list(out), [1])
|
|
|
|
out = pmap(lambda x: jax.lax.pmean(x, 'i'), 'i')(x)
|
|
self.assertEqual(list(out), [1])
|
|
|
|
|
|
class PmapWithDevicesTest(jtu.JaxTestCase):
|
|
|
|
def testAllDevices(self):
|
|
f = pmap(lambda x: x - lax.psum(x, 'i'), axis_name='i',
|
|
devices=xla_bridge.devices())
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
expected = x - np.sum(x, 0)
|
|
ans = f(x)
|
|
self.assertAllClose(ans, expected)
|
|
|
|
def testOneDevice(self):
|
|
if xla_bridge.device_count() == 1:
|
|
raise SkipTest("this test requires multiple devices")
|
|
|
|
d0 = xla_bridge.devices()[0]
|
|
d1 = xla_bridge.devices()[1]
|
|
f = lambda x: jnp.dot(x, x.T)
|
|
f0 = pmap(f, devices=[d0])
|
|
f1 = pmap(f, devices=[d1])
|
|
x = np.random.rand(1, 1000, 1000)
|
|
r0 = f0(x)
|
|
r1 = f1(x)
|
|
expected = np.expand_dims(np.dot(x.squeeze(), x.squeeze().T), 0)
|
|
self.assertAllClose(r0, expected, atol=1e-6, rtol=1e-3)
|
|
self.assertAllClose(r1, expected, atol=1e-6, rtol=1e-3)
|
|
|
|
def testNoDevicesError(self):
|
|
f = pmap(lambda x: x - lax.psum(x, 'i'), axis_name='i', devices=[])
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
with self.assertRaisesRegex(
|
|
ValueError, "'devices' argument to pmap must be non-empty, or None."):
|
|
f(x)
|
|
|
|
def testBadAxisSizeError(self):
|
|
if xla_bridge.device_count() == 1:
|
|
raise SkipTest("this test requires multiple devices")
|
|
|
|
f = pmap(lambda x: lax.psum(x, 'i'), axis_name='i',
|
|
devices=xla_bridge.devices())
|
|
with self.assertRaisesRegex(
|
|
ValueError, r"Leading axis size of input to pmapped function must "
|
|
r"equal the number of local devices passed to pmap. Got axis_size=1, "
|
|
r"num_local_devices=\d."):
|
|
f(jnp.ones(1))
|
|
|
|
with self.assertRaisesRegex(
|
|
ValueError, r"Leading axis size of input to pmapped function must "
|
|
r"equal the number of local devices passed to pmap. Got axis_size=\d, "
|
|
r"num_local_devices=\d."):
|
|
f(jnp.ones(xla_bridge.device_count() + 1))
|
|
|
|
def testNestedPmapsError(self):
|
|
# Devices specified in outer pmap
|
|
@partial(pmap, axis_name='i', devices=xla_bridge.devices())
|
|
def foo(x):
|
|
@partial(pmap, axis_name='j')
|
|
def bar(y):
|
|
return lax.psum(y, 'j')
|
|
return bar(x)
|
|
|
|
with self.assertRaisesRegex(
|
|
ValueError,
|
|
"Nested pmaps with explicit devices argument."):
|
|
foo(jnp.ones((xla_bridge.device_count(), 1)))
|
|
|
|
# Devices specified in inner pmap
|
|
@partial(pmap, axis_name='i')
|
|
def foo(x):
|
|
@partial(pmap, axis_name='j', devices=xla_bridge.devices())
|
|
def bar(y):
|
|
return lax.psum(y, 'j')
|
|
return bar(x)
|
|
|
|
with self.assertRaisesRegex(
|
|
ValueError,
|
|
"Nested pmaps with explicit devices argument."):
|
|
foo(jnp.ones((xla_bridge.device_count(), 1)))
|
|
|
|
def testJitInPmap(self):
|
|
@partial(pmap, axis_name='i', devices=xla_bridge.devices())
|
|
def foo(x):
|
|
@jit
|
|
def bar(y):
|
|
return y + 1
|
|
return lax.psum(bar(x), 'i')
|
|
|
|
ndevices = xla_bridge.device_count()
|
|
ans = foo(jnp.ones((ndevices, 1)))
|
|
expected = np.ones((ndevices, 1), dtype=jnp.float_) * ndevices * 2
|
|
self.assertAllClose(ans, expected)
|
|
|
|
def testPmapInJit(self):
|
|
@jit
|
|
def foo(x):
|
|
@partial(pmap, axis_name='i', devices=xla_bridge.devices())
|
|
def bar(y):
|
|
return lax.psum(y, 'i')
|
|
return bar(x)
|
|
|
|
ndevices = xla_bridge.device_count()
|
|
ans = foo(jnp.ones((ndevices, 1)))
|
|
expected = np.ones((ndevices, 1), dtype=jnp.float_) * ndevices
|
|
self.assertAllClose(ans, expected)
|
|
|
|
def testGradBasic(self):
|
|
@partial(pmap, axis_name='i', devices=xla_bridge.devices())
|
|
def f(x):
|
|
return jnp.sin(x)
|
|
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
|
|
ans = grad(lambda x: jnp.sum(jnp.sin(x)))(x)
|
|
expected = grad(lambda x: jnp.sum(f(x)))(x)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testPmapStaticArgnums(self):
|
|
@partial(pmap, axis_name='i', static_broadcasted_argnums=1)
|
|
def f(x, y):
|
|
return jnp.sin(x + y)
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
y = np.arange(4, dtype=np.float32)
|
|
|
|
ans = f(x, y)
|
|
expected = np.sin(x + y[None])
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
class ShardedDeviceArrayTest(jtu.JaxTestCase):
|
|
|
|
def testThreadsafeIndexing(self):
|
|
# NOTE(skye): I picked these values to be big enough to cause interesting
|
|
# execution overlap, but small enough to not use too much memory. YMMV.
|
|
shape = (8, 8000, 1000)
|
|
|
|
if jax.device_count() < shape[0]:
|
|
raise SkipTest(f"requires {shape[0]} devices")
|
|
|
|
x = jnp.arange(jnp.prod(shape)).reshape(shape)
|
|
sharded_x = pmap(lambda x: x)(x)
|
|
|
|
num_threads = 10
|
|
futures = []
|
|
expected = []
|
|
with ThreadPoolExecutor(max_workers=num_threads) as executor:
|
|
for i in range(num_threads):
|
|
idx = i % shape[0]
|
|
# Mix together different kinds of indices
|
|
if i % 2 == 0:
|
|
idx = slice(idx, idx + 1)
|
|
# Use the "kwarg trick" to work around late-binding closures. See
|
|
# https://docs.python-guide.org/writing/gotchas/#late-binding-closures.
|
|
futures.append(executor.submit(
|
|
lambda idx=idx: [sharded_x[idx] for _ in range(10)][0]))
|
|
expected.append(x[idx])
|
|
actual = [f.result() for f in futures]
|
|
self.assertAllClose(actual, expected, check_dtypes=False)
|
|
|
|
|
|
class SpecToIndicesTest(jtu.JaxTestCase):
|
|
|
|
def testShardsPerAxis(self):
|
|
shape = (4, 8)
|
|
spec = pxla.ShardingSpec(shards_per_axis=(2, 2),
|
|
is_axis_materialized=(True, True),
|
|
replication_factor=1)
|
|
self.assertEqual(pxla.spec_to_indices(shape, spec),
|
|
((slice(0,2), slice(0,4)),
|
|
(slice(0,2), slice(4,8)),
|
|
(slice(2,4), slice(0,4)),
|
|
(slice(2,4), slice(4,8))))
|
|
|
|
def testUnshardedAxis(self):
|
|
shape = (4, 8)
|
|
spec = pxla.ShardingSpec(shards_per_axis=(2, 1),
|
|
is_axis_materialized=(True, True),
|
|
replication_factor=1)
|
|
self.assertEqual(pxla.spec_to_indices(shape, spec),
|
|
(slice(0,2), (slice(2,4))))
|
|
|
|
def testNoSharding(self):
|
|
shape = (4, 8)
|
|
spec = pxla.ShardingSpec(shards_per_axis=(1, 1),
|
|
is_axis_materialized=(True, True),
|
|
replication_factor=1)
|
|
self.assertEqual(pxla.spec_to_indices(shape, spec),
|
|
(slice(None),))
|
|
|
|
def testUnmaterializedAxis(self):
|
|
shape = (4, 8)
|
|
spec = pxla.ShardingSpec(shards_per_axis=(4, 1),
|
|
is_axis_materialized=(False, True),
|
|
replication_factor=1)
|
|
self.assertEqual(pxla.spec_to_indices(shape, spec),
|
|
(0, 1, 2, 3))
|
|
|
|
shape = (2, 2)
|
|
spec = pxla.ShardingSpec(shards_per_axis=(1, 2),
|
|
is_axis_materialized=(True, False),
|
|
replication_factor=1)
|
|
self.assertEqual(pxla.spec_to_indices(shape, spec),
|
|
((slice(None), 0),
|
|
(slice(None), 1)))
|
|
|
|
def testReplication(self):
|
|
shape = (2, 8)
|
|
spec = pxla.ShardingSpec(shards_per_axis=(2, 1),
|
|
is_axis_materialized=(False, True),
|
|
replication_factor=3)
|
|
self.assertEqual(pxla.spec_to_indices(shape, spec),
|
|
(0, 0, 0, 1, 1, 1))
|
|
|
|
|
|
def _spec_str(spec):
|
|
return (f"({spec.shards_per_axis},"
|
|
f"{spec.is_axis_materialized},"
|
|
f"{spec.replication_factor})")
|
|
|
|
|
|
class ShardArgsTest(jtu.JaxTestCase):
|
|
|
|
def numpy_array(x):
|
|
return x
|
|
|
|
def device_array(x):
|
|
return jax.device_put(x)
|
|
|
|
# TODO(skye): add coverage for ShardedDeviceArrays
|
|
|
|
@parameterized.named_parameters(
|
|
{"testcase_name":
|
|
f"_shape={shape}_spec={_spec_str(spec)}_arg={make_arg.__name__}"
|
|
.replace(" ", ""),
|
|
"shape": shape, "spec": spec, "make_arg": make_arg}
|
|
for make_arg in [numpy_array, device_array]
|
|
for shape, spec in [
|
|
# pmap(in_axes=0)
|
|
[(4, 8), pxla.ShardingSpec(shards_per_axis=(4, 1),
|
|
is_axis_materialized=(False, True),
|
|
replication_factor=1)],
|
|
# pmap(in_axes=1)
|
|
[(2, 2), pxla.ShardingSpec(shards_per_axis=(1, 2),
|
|
is_axis_materialized=(True, False),
|
|
replication_factor=1)],
|
|
# unsharded
|
|
[(4, 8), pxla.ShardingSpec(shards_per_axis=(1, 1),
|
|
is_axis_materialized=(True, True),
|
|
replication_factor=1)],
|
|
# partitioned, 1 axis
|
|
[(4, 8), pxla.ShardingSpec(shards_per_axis=(2, 1),
|
|
is_axis_materialized=(True, True),
|
|
replication_factor=1)],
|
|
# partitioned, 2 axes
|
|
[(4, 8), pxla.ShardingSpec(shards_per_axis=(2, 2),
|
|
is_axis_materialized=(True, True),
|
|
replication_factor=1)],
|
|
# partitioned + sharding
|
|
[(2, 8), pxla.ShardingSpec(shards_per_axis=(2, 2),
|
|
is_axis_materialized=(False, True),
|
|
replication_factor=1)],
|
|
# replication + sharding
|
|
[(2, 8), pxla.ShardingSpec(shards_per_axis=(2, 1),
|
|
is_axis_materialized=(False, True),
|
|
replication_factor=3)],
|
|
# replication, no sharding
|
|
[(2, 8), pxla.ShardingSpec(shards_per_axis=(1, 1),
|
|
is_axis_materialized=(True, True),
|
|
replication_factor=3)],
|
|
])
|
|
def testShardArgs(self, shape, spec, make_arg):
|
|
indices = pxla.spec_to_indices(shape, spec)
|
|
nshards = len(indices)
|
|
if jax.device_count() < nshards:
|
|
raise SkipTest
|
|
x = np.arange(np.prod(shape)).reshape(shape)
|
|
arg = make_arg(x)
|
|
bufs = pxla.shard_args(jax.devices()[:nshards],
|
|
[indices], [arg])
|
|
self.assertEqual(len(bufs), nshards)
|
|
for buf, idx in zip(bufs, indices):
|
|
self.assertEqual(len(buf), 1)
|
|
self.assertAllClose(buf[0].to_py(), x[idx], check_dtypes=False)
|
|
|
|
if __name__ == '__main__':
|
|
absltest.main()
|