mirror of
https://github.com/ROCm/jax.git
synced 2025-04-16 11:56:07 +00:00

* Make check_dtypes, atol, and rtol keyword-only arguments in jax.test_util APIs. Default to check_dtypes=True. Remove explicit usages of check_dtypes=True from tests. This mostly just removes visual noise from tests. Testing for exact type equality is the sensible default, although there are cases where opting out makes sense. No functional changes intended. * Fix a number of lax reference implementations to preserve types.
146 lines
5.1 KiB
Python
146 lines
5.1 KiB
Python
# Copyright 2019 Google LLC
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""Tests for Vectorize library."""
|
|
|
|
from absl.testing import absltest
|
|
from absl.testing import parameterized
|
|
|
|
from jax import numpy as jnp
|
|
from jax import test_util as jtu
|
|
from jax.experimental.vectorize import vectorize
|
|
|
|
from jax.config import config
|
|
config.parse_flags_with_absl()
|
|
|
|
matmat = vectorize('(n,m),(m,k)->(n,k)')(jnp.dot)
|
|
matvec = vectorize('(n,m),(m)->(n)')(jnp.dot)
|
|
vecmat = vectorize('(m),(m,k)->(k)')(jnp.dot)
|
|
vecvec = vectorize('(m),(m)->()')(jnp.dot)
|
|
|
|
@vectorize('(n)->()')
|
|
def magnitude(x):
|
|
return jnp.dot(x, x)
|
|
|
|
mean = vectorize('(n)->()')(jnp.mean)
|
|
|
|
@vectorize('()->(n)')
|
|
def stack_plus_minus(x):
|
|
return jnp.stack([x, -x])
|
|
|
|
@vectorize('(n)->(),(n)')
|
|
def center(array):
|
|
bias = jnp.mean(array)
|
|
debiased = array - bias
|
|
return bias, debiased
|
|
|
|
|
|
class VectorizeTest(jtu.JaxTestCase):
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_leftshape={}_rightshape={}".format(left_shape, right_shape),
|
|
"left_shape": left_shape, "right_shape": right_shape, "result_shape": result_shape}
|
|
for left_shape, right_shape, result_shape in [
|
|
((2, 3), (3, 4), (2, 4)),
|
|
((2, 3), (1, 3, 4), (1, 2, 4)),
|
|
((5, 2, 3), (1, 3, 4), (5, 2, 4)),
|
|
((6, 5, 2, 3), (3, 4), (6, 5, 2, 4)),
|
|
]))
|
|
def test_matmat(self, left_shape, right_shape, result_shape):
|
|
self.assertEqual(matmat(jnp.zeros(left_shape),
|
|
jnp.zeros(right_shape)).shape, result_shape)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_leftshape={}_rightshape={}".format(left_shape, right_shape),
|
|
"left_shape": left_shape, "right_shape": right_shape, "result_shape": result_shape}
|
|
for left_shape, right_shape, result_shape in [
|
|
((2, 3), (3,), (2,)),
|
|
((2, 3), (1, 3), (1, 2)),
|
|
((4, 2, 3), (1, 3), (4, 2)),
|
|
((5, 4, 2, 3), (1, 3), (5, 4, 2)),
|
|
]))
|
|
def test_matvec(self, left_shape, right_shape, result_shape):
|
|
self.assertEqual(matvec(jnp.zeros(left_shape),
|
|
jnp.zeros(right_shape)).shape, result_shape)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_leftshape={}_rightshape={}".format(left_shape, right_shape),
|
|
"left_shape": left_shape, "right_shape": right_shape, "result_shape": result_shape}
|
|
for left_shape, right_shape, result_shape in [
|
|
((3,), (3,), ()),
|
|
((2, 3), (3,), (2,)),
|
|
((4, 2, 3), (3,), (4, 2)),
|
|
]))
|
|
def test_vecvec(self, left_shape, right_shape, result_shape):
|
|
self.assertEqual(vecvec(jnp.zeros(left_shape),
|
|
jnp.zeros(right_shape)).shape, result_shape)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}".format(shape),
|
|
"shape": shape, "result_shape": result_shape}
|
|
for shape, result_shape in [
|
|
((3,), ()),
|
|
((2, 3,), (2,)),
|
|
((1, 2, 3,), (1, 2)),
|
|
]))
|
|
def test_magnitude(self, shape, result_shape):
|
|
size = 1
|
|
for x in shape:
|
|
size *= x
|
|
self.assertEqual(magnitude(jnp.arange(size).reshape(shape)).shape, result_shape)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}".format(shape),
|
|
"shape": shape, "result_shape": result_shape}
|
|
for shape, result_shape in [
|
|
((3,), ()),
|
|
((2, 3), (2,)),
|
|
((1, 2, 3, 4), (1, 2, 3)),
|
|
]))
|
|
def test_mean(self, shape, result_shape):
|
|
self.assertEqual(mean(jnp.zeros(shape)).shape, result_shape)
|
|
|
|
def test_mean_axis(self):
|
|
self.assertEqual(mean(jnp.zeros((2, 3)), axis=0).shape, (3,))
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}".format(shape),
|
|
"shape": shape, "result_shape": result_shape}
|
|
for shape, result_shape in [
|
|
((), (2,)),
|
|
((3,), (3,2,)),
|
|
]))
|
|
def test_stack_plus_minus(self, shape, result_shape):
|
|
self.assertEqual(stack_plus_minus(jnp.zeros(shape)).shape, result_shape)
|
|
|
|
def test_center(self):
|
|
b, a = center(jnp.arange(3))
|
|
self.assertEqual(a.shape, (3,))
|
|
self.assertEqual(b.shape, ())
|
|
self.assertAllClose(1.0, b, check_dtypes=False)
|
|
|
|
X = jnp.arange(12).reshape((3, 4))
|
|
b, a = center(X, axis=1)
|
|
self.assertEqual(a.shape, (3, 4))
|
|
self.assertEqual(b.shape, (3,))
|
|
self.assertAllClose(jnp.mean(X, axis=1), b)
|
|
|
|
b, a = center(X, axis=0)
|
|
self.assertEqual(a.shape, (3, 4))
|
|
self.assertEqual(b.shape, (4,))
|
|
self.assertAllClose(jnp.mean(X, axis=0), b)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
absltest.main()
|