Add files via upload

This commit is contained in:
sorosoo 2023-04-07 22:35:41 +08:00 committed by GitHub
parent 3045ba4383
commit 74351fd02d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 137 additions and 0 deletions

11
config/lr_scheduler.yaml Normal file
View File

@ -0,0 +1,11 @@
scheduler_type: LINEAR_WARMUP_THEN_POLY_SCHEDULER
# total_iters=epochs * 训练的图像数量
kwargs: |
{
"warmup_iters": 62,
"total_iters": 620,
"warmup_ratio": 0.000001,
"min_lr": 0.,
"power": 1.
}

43
config/model.yaml Normal file
View File

@ -0,0 +1,43 @@
# 网络模型的配置文件
embed_dims:
- 3 # 输入图像的通道
- 32
- 64
- 160
- 256
depths:
- 3
- 3
- 5
- 2
drop_prob_of_encoder: 0.1
expand_rations:
- 8
- 8
- 4
- 4
drop_path_prob: 0.1
drop_prob_of_decoder: 0.1
# hidden_channels, output_channels
channels_of_hamburger: 256
nmf2d_config:
SPATIAL: 1
MD_S: 1
MD_D: 512
MD_R: 16
TRAIN_STEPS: 6
EVAL_STEPS: 7
INV_T: 1
ETA: 0.9
RAND_INIT: true
return_bases: false
device: cuda
# 类别
classes:
- background # 必须要
- leaf

32
config/optimizer.yaml Normal file
View File

@ -0,0 +1,32 @@
# 优化器的配置文件
base_config:
optim_type: AdamW
kwargs: |
{
"lr": 0.00006,
"weight_decay": 0.01,
"betas": (0.9, 0.999)
}
parameters:
# key(block, block, norm)自定义
# default: decay_mult=1, lr_mult=1
# left必须位于第一位表示剩余的参数可以更改内部属性中decay_mult和lr_mult, regex_expr不起作用
- left:
regex_expr: none
decay_mult: 0
lr_mult: 1
- block:
regex_expr: ^encoder\.stages\.[0-9]\.blocks.*$
decay_mult: 0
lr_mult: 1
- norm:
regex_expr: ^encoder\.stages\.[0-9]\.norm.*$
decay_mult: 0
lr_mult: 1
- head:
regex_expr: ^decoder.*$
decay_mult: 1
lr_mult: 10

12
config/predict.yaml Normal file
View File

@ -0,0 +1,12 @@
device: "cuda"
# -1表示从不加载任何权重就进行预测
# 0表示使用官方提供的权重进行预测
# 1表示使用自己的权重进行预测
mode: 0
checkpoint:
- pretrained # 目录
- segnext_tiny_512x512_ade_160k.pth # 文件名
# 利用正则表达式将官方model中的权重加载到模型, mode != 0时失效
regex_expr:
- ^(?!decoder\.cls_seg.*)$ # ?!表示对()内的内容取反详请见于model_utils.init_model

39
config/train.yaml Normal file
View File

@ -0,0 +1,39 @@
device: cuda
batch_size: 2
image_height: 512
image_width: 512
workers: 0
epochs: 10
# 每一类的占比权重如果要让每一类的占比权重相同为1.0即可
weight:
- 1.0
# 数据集存放位置
root:
- dataset
train_dir_name:
- train
val_dir_name:
- val
images_dir_name: images
labels_dir_name: labels
# 每训练多少个epoch就进行验证
eval_every_n_epoch: 10
# 权重保存位置
save_path:
- pretrained # 目录
- SegNeXt # 文件名
# -1表示从零开始训练网络即不加载任何权重
# 0表示使用官方提供的权重
# 1表示使用自己的权重
mode: 0
checkpoint:
- pretrained # 目录
- segnext_tiny_512x512_ade_160k.pth # 文件名
# 利用正则表达式将官方model中的权重加载到模型, mode != 0时失效
regex_expr:
- ^(?!decoder\.cls_seg.*)$ # ?!表示对()内的内容取反, 详请见于model_utils.init_model