import yaml from pathlib import Path import utils import torch if __name__ == "__main__": model_config = Path("config") / "model.yaml" with model_config.open("r", encoding="utf-8") as f: model_config = yaml.load(f, yaml.FullLoader) # 类别 classes = model_config["classes"] # 类别对应的语义颜色,按照顺序对应 colors = utils.get_colors(len(classes)) train_config = Path("config") / "train.yaml" with train_config.open("r", encoding="utf-8") as f: train_config = yaml.load(f, yaml.FullLoader) # 类别对应的权重 weight = torch.tensor(train_config["weight"]) if len(train_config["weight"]) != 1 else torch.ones(len(classes))